[luoguP2774] 方格取数问题(最大点权独立集)
引入两个概念:
最小点权覆盖集:满足每一条边的两个端点至少选一个的最小权点集。
最大点权独立集:满足每一条边的两个端点最多选一个的最大权点集。
现在对网格染色,使得相邻两点颜色不同,之后把两个颜色的点分成两个集合X,Y。S向X集合每个点连一条该点权值的边,Y集合每个点向T连一条该点权值的边,原来的边流量全部变为INF。这个网络的最小割为最小点权覆盖集。因为这个最小割满足了,对于中间每一条边,两端的点必定选择了一个。若一个都没有选择则S与T仍连通。且因为中间的边流量为INF所以不会是中间被堵塞。
然后我们可以证明对于每一个点权覆盖集,将选的点不选,不选的点选,得到的点集一定是一个点权独立集。因为每一条边至少选了一个,反选后就至少有一个选不了。
所以该网络的最小割=最大流=权值和-答案
答案就是权值和-最大流,跑一遍最大流即可
——代码
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#define INF 1e9
#define N 10010
#define M 50001
#define min(x, y) ((x) < (y) ? (x) : (y)) int n, m, cnt, sum, s, t, num;
int head[N], to[M], val[M], next[M], dis[N], cur[N];
int map[][], dx[] = {, , -, }, dy[] = {, , , -}; inline int read()
{
int x = , f = ;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -;
for(; isdigit(ch); ch = getchar()) x = (x << ) + (x << ) + ch - '';
return x * f;
} inline void add(int x, int y, int z)
{
to[cnt] = y;
val[cnt] = z;
next[cnt] = head[x];
head[x] = cnt++;
} inline bool bfs()
{
int i, u, v;
std::queue <int> q;
memset(dis, -, sizeof(dis));
q.push(s);
dis[s] = ;
while(!q.empty())
{
u = q.front(), q.pop();
for(i = head[u]; i ^ -; i = next[i])
{
v = to[i];
if(val[i] && dis[v] == -)
{
dis[v] = dis[u] + ;
if(v == t) return ;
q.push(v);
}
}
}
return ;
} inline int dfs(int u, int maxflow)
{
if(u == t) return maxflow;
int v, d, ret = ;
for(int &i = cur[u]; i ^ -; i = next[i])
{
v = to[i];
if(val[i] && dis[v] == dis[u] + )
{
d = dfs(v, min(val[i], maxflow - ret));
ret += d;
val[i] -= d;
val[i ^ ] += d;
if(ret == maxflow) return ret;
}
}
if(ret ^ maxflow) dis[u] = -;
return ret;
} int main()
{
int i, j, k, x, y;
m = read();
n = read();
s = , t = n * m + ;
memset(head, -, sizeof(head));
for(i = ; i <= m; i++)
for(j = ; j <= n; j++)
{
num++;
sum += x = read();
if((i + j) & )
{
add(s, num, x), add(num, s, );
if(i > ) add(num, num - n, INF), add(num - n, num, );
if(i < m) add(num, num + n, INF), add(num + n, num, );
if(j > ) add(num, num - , INF), add(num - , num, );
if(j < n) add(num, num + , INF), add(num + , num, );
}
else add(num, t, x), add(t, num, );
}
while(bfs())
{
for(i = s; i <= t; i++) cur[i] = head[i];
sum -= dfs(s, INF);
}
printf("%d\n", sum);
return ;
}
[luoguP2774] 方格取数问题(最大点权独立集)的更多相关文章
- HDU 1565 1569 方格取数(最大点权独立集)
HDU 1565 1569 方格取数(最大点权独立集) 题目链接 题意:中文题 思路:最大点权独立集 = 总权值 - 最小割 = 总权值 - 最大流 那么原图周围不能连边,那么就能够分成黑白棋盘.源点 ...
- HDU 1569 - 方格取数(2) - [最大点权独立集与最小点权覆盖集]
嗯,这是关于最大点权独立集与最小点权覆盖集的姿势,很简单对吧,然后开始看题. 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1569 Time Limi ...
- hdu1569 方格取数(2) 最大点权独立集=总权和-最小点权覆盖集 (最小点权覆盖集=最小割=最大流)
/** 转自:http://blog.csdn.net/u011498819/article/details/20772147 题目:hdu1569 方格取数(2) 链接:https://vjudge ...
- TZOJ 3665 方格取数(2)(最大点权独立集)
描述 给你一个m*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取数所在的2个格子不能相邻,并且取出的数的和最大. 输入 包括多个测试实例 ...
- hdu1569 方格取数 求最大点权独立集
题意:一个方格n*m,取出一些点,要求两两不相邻,求最大和.思路:建图,相邻的点有一条边,则建立了一个二分图,求最大点权独立集(所取点两两无公共边,权值和最大),问题转化为求总权和-最小点权覆盖集(点 ...
- hdu - 1565 方格取数(1) && 1569 方格取数(2) (最大点权独立集)
http://acm.hdu.edu.cn/showproblem.php?pid=1565 两道题只是数据范围不同,都是求的最大点权独立集. 我们可以把下标之和为奇数的分成一个集合,把下标之和为偶数 ...
- LuoguP2774 方格取数问题(最小割)
题目背景 none! 题目描述 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法.对于 ...
- LibreOJ #6007. 「网络流 24 题」方格取数 最小割 最大点权独立集 最大流
#6007. 「网络流 24 题」方格取数 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
- hdu 4859 最大点权独立集的变形(方格取数的变形)
/*刚开始不会写,最大点权独立集神马都不知道,在潘神的指导下终于做出来,灰常感谢ps: 和方格取数差不多奇偶建图,对于D必割点权为0,对于.必然不割点权为inf.然后和方格取数差不多的建图 .--.| ...
随机推荐
- Android(java)学习笔记116:BroadcastReceiver之 静态注册 和 动态注册
1. 广播接受者>什么是广播.收音机.电台:对外发送信号.收音机:接收电台的信号. >在android系统里面,系统有很多重要的事件: 电池电量低,插入充电器,sd卡被移除,有电话打出去, ...
- C++利用偏移量对文件操作
对输入流操作:seekg()与tellg()对输出流操作:seekp()与tellp()下面以输入流函数为例介绍用法: seekg()是对输入文件定位,它有两个参数:第一个参数是偏移量,第二个参数是基 ...
- jquery源码学习第一天
第一天认识了jquery的大体结构,总的大范围是 (function() { // 这里是封装的代码,包括了各种方法.工具 window.JQuery = JQuery window.$ = $; } ...
- 你对CommonJS规范了解多少?
写在前面 为什么会出现CommonJS规范? 因为JavaScript本身并没有模块的概念,不支持封闭的作用域和依赖管理,传统的文件引入方式又会污染变量,甚至文件引入的先后顺序都会影响整个项目的运行. ...
- 学习笔记(五): Feature Crosses
目录 Feature Crosses Encoding Nonlinearity Kinds of feature crosses Glossay Crossing One-Hot Vectors P ...
- NOIp2017囤题计划
马上就要NOIp2017了,应该囤些题目吧…… 好的这只是一个开始 upd - 11.5 1.p1576 最小花费 无向图,dijisktra 2.p1339 [USACO09OCT]热浪Heat W ...
- 安装cfssl证书生成工具
wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 wget https://pkg.cfssl.org/R1.2/cfssljson_linux-am ...
- destoon 短信发送函数及短信接口修改
// $DT在common.inc.php中定义, $CACHE = cache_read('module.php'); $DT = $CACHE['dt']; 从缓存里读取网站配置信息. //$d ...
- XenServer 6.5 安装
为了方便截图我下面的所有操作都是在VMware Workstation 11 上面完成的,但在之后的所有Citrix产品的操作中都将会在物理环境完成,物理机安装XS的步骤和下面是相同的. 1.打开Wo ...
- SQL_4_函数
在SQL的函数中可以执行一些诸如对某一些进行汇总或将一个字符串中的字符转换为大写的操作等: 函数有:汇总函数.日期与时间函数.数学函数.字符函数.转换函数与其他函数. 汇总函数 这是一组函数,它们返回 ...