LeetCode 里面很大一部分题目都是属于这个范围,例如Path Sum用的就是递归+DFS,Path Sum2用的是递归+DFS+回溯

这里参考了一些网上写得很不错的文章,总结一下理解与模板

递归:就是出现这种情况的代码: (或者说是用到了栈)

解答树角度:在dfs遍历一棵解答树

优点:结构简洁

缺点:效率低,可能栈溢出

递归的一般结构:

 void f()
{
if(符合边界条件)
{
///////
return;
} //某种形式的调用
f();
}

回溯:递归的一种,或者说是通过递归这种代码结构来实现回溯这个目的。回溯法可以被认为是一个有过剪枝的DFS过程。

解答树角度:带回溯的dfs遍历一棵解答树

回溯的一般结构:

 void dfs(int 当前状态)
{
if(当前状态为边界状态)
{
记录或输出
return;
}
for(i=;i<n;i++) //横向遍历解答树所有子节点
{
//扩展出一个子状态。
修改了全局变量
if(子状态满足约束条件)
{
dfs(子状态)
}
恢复全局变量//回溯部分
}
}

BFS和DFS是相似。

BFS(显式用队列)

DFS(隐式用栈)(即递归)

当然,对于DFS,用递归可能会造成栈溢出,所以也可以更改为显示栈。

BFS:典型例题:P101 对于二叉树的层次遍历,P108对于图的走迷宫最短路径

DFS:典型例题:P107黑白图像

格式:将所有节点遍历一遍,在遍历每个节点是,DFS的遍历该节点相关的所有节点

 void dfs(int x, int y)
{
if(!mat[x][y] || vis[x][y]) return; // 曾经访问过这个格子,或者当前格子是白色
vis[x][y] = ; // 标记(x,y)已访问过
dfs(x-,y-); dfs(x-,y); dfs(x-,y+);
dfs(x-,y); dfs(x,y+);
dfs(x+,y-); dfs(x+,y); dfs(x+,y+); // 递归访问周围的八个格子
}
主循环:
for(int i = ; i <= n; i++)
for(int j = ; j <= n; j++)
if(!vis[i][j] && mat[i][j])
{
count++;
dfs(i,j);
} // 找到没有访问过的黑格

上述内容为转载内容。

递归,回溯,DFS,BFS的理解和模板的更多相关文章

  1. 递归,回溯,DFS,BFS的理解和模板【摘】

    递归:就是出现这种情况的代码: (或者说是用到了栈) 解答树角度:在dfs遍历一棵解答树 优点:结构简洁缺点:效率低,可能栈溢出 递归的一般结构: void f() { if(符合边界条件) { // ...

  2. 第三次组队赛 (DFS&BFS)

    网站:CSUST 8月1日 先总结下,不得不说死的很惨,又是第三就不说了,一共7道题,AC了5道,但是有一个组三个人是做的个人赛,有两人AK了.......Orz,然后深搜还是大问题,宽搜倒是不急了. ...

  3. 【DFS/BFS】NYOJ-58-最少步数(迷宫最短路径问题)

    [题目链接:NYOJ-58] 经典的搜索问题,想必这题用广搜的会比较多,所以我首先使的也是广搜,但其实深搜同样也是可以的. 不考虑剪枝的话,两种方法实践消耗相同,但是深搜相比广搜内存低一点. 我想,因 ...

  4. ID(dfs+bfs)-hdu-4127-Flood-it!

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4127 题目意思: 给n*n的方格,每个格子有一种颜色(0~5),每次可以选择一种颜色,使得和左上角相 ...

  5. 递归回溯 UVa140 Bandwidth宽带

    本题题意:寻找一个排列,在此排序中,带宽的长度最小(带宽是指:任意一点v与其距离最远的且与v有边相连的顶点与v的距离的最大值),若有多个,按照字典序输出最小的哪一个. 解题思路: 方法一:由于题目说结 ...

  6. LeetCode || 递归 / 回溯

    呜呜呜 递归好不想写qwq 求“所有情况”这种就递归 17. Letter Combinations of a Phone Number 题意:在九宫格上按数字,输出所有可能的字母组合 Input: ...

  7. 算法学习记录-图(DFS BFS)

    图: 目录: 1.概念 2.邻接矩阵(结构,深度/广度优先遍历) 3.邻接表(结构,深度/广度优先遍历) 图的基本概念: 数据元素:顶点 1.有穷非空(必须有顶点) 2.顶点之间为边(可空) 无向图: ...

  8. 遍历二叉树 - 基于递归的DFS(前序,中序,后序)

    上节中已经学会了如何构建一个二叉搜索数,这次来学习下树的打印-基于递归的DFS,那什么是DFS呢? 有个概念就行,而它又分为前序.中序.后序三种遍历方式,这个也是在面试中经常会被问到的,下面来具体学习 ...

  9. POJ 3083 -- Children of the Candy Corn(DFS+BFS)TLE

    POJ 3083 -- Children of the Candy Corn(DFS+BFS) 题意: 给定一个迷宫,S是起点,E是终点,#是墙不可走,.可以走 1)先输出左转优先时,从S到E的步数 ...

随机推荐

  1. Linux下如何通过命令检查网卡是否插上网线

    How To:Linux下如何通过命令检查网卡是否插上网线   主要工具为ethtool来检查,主要关注的字段为"Link detected",注意如下的输出,其中em4实际物理上 ...

  2. FFT快速傅里叶变化

    纪念人生第一次FFT 前排感谢iamzky,讲解非常详细 #include<iostream> #include<cstdio> #include<cmath> u ...

  3. C语言输出多位小数

    #include<stdio.h>#include<stdlib.h>int main(){int i=0;int m=19;int n=3;int s=0;s=m/n;pri ...

  4. GOPATH和GOROOT

    安装指定版本golang apt-get purge golang* //删除之前安装的文件 add-apt-repository ppa:evarlast/golang-1.8 apt-get up ...

  5. Python使用ORM控制MongoDB(MongoEngine)

    简介: MongoEngine是一个对象文档映射器(ODM),相当于一个基于SQL的对象关系映射器(ORM) pymongo来操作MongoDB数据库,但是直接把对于数据库的操作代码都写在脚本中,这会 ...

  6. Python9-进程理论-day35

    #!/usr/bin/env python# -*- coding:utf-8 -*-# Author:Tim'''进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源 ...

  7. c++IDE

    暂时使用Code::Blocks 16.01. 因为之前没有c++编译器,所以去官网选择安装codeblocks-16.01mingw-setup.exe 然后settings>Compiler ...

  8. Tourists Gym - 101002I LCA——dfs+RMQ在线算法

    LCA(Least Common Ancestors),即最近公共祖先,是指这样一个问题:在有根树中,找出某两个结点u和v最近的公共祖先(另一种说法,离树根最远的公共祖先). 知识需求:1)RMQ的S ...

  9. python + selenium - selenium简介

    1. 产品简介 selenium 是 基于 web网页的UI自动化测试框架. 1)支持多浏览器操作:ie.chrome.firefox.edge.safaria等 2)跨平台:windows.linu ...

  10. 零基础学习 Python 之数字与运算

    写在之前 大家好,这里是零基础学习 Python 系列,在这里我将从最基本的 Python 写起,然后再慢慢涉及到高阶以及具体应用方面.我是完全自学的 Python,所以很是明白自学对于一个人的考验, ...