@(POJ)[Stirling數, 排列組合, 數形結合]

Description

The Stirling number of the second kind S(n, m) stands for the number of ways to partition a set of n things into m nonempty subsets. For example, there are seven ways to split a four-element set into two parts:

{1, 2, 3} U {4}, {1, 2, 4} U {3}, {1, 3, 4} U {2}, {2, 3, 4} U {1}

{1, 2} U {3, 4}, {1, 3} U {2, 4}, {1, 4} U {2, 3}.

There is a recurrence which allows to compute S(n, m) for all m and n.

S(0, 0) = 1; S(n, 0) = 0 for n > 0; S(0, m) = 0 for m > 0;

S(n, m) = m S(n - 1, m) + S(n - 1, m - 1), for n, m > 0.

Your task is much "easier". Given integers n and m satisfying 1 <= m <= n, compute the parity of S(n, m), i.e. S(n, m) mod 2.

Example:

S(4, 2) mod 2 = 1.

Task

Write a program which for each data set:

reads two positive integers n and m,

computes S(n, m) mod 2,

writes the result.

Input

The first line of the input contains exactly one positive integer d equal to the number of data sets, 1 <= d <= 200. The data sets follow.

Line i + 1 contains the i-th data set - exactly two integers ni and mi separated by a single space, 1 <= mi <= ni <= 10^9.

Output

The output should consist of exactly d lines, one line for each data set. Line i, 1 <= i <= d, should contain 0 or 1, the value of S(ni, mi) mod 2.

Sample Input

1
4 2

Sample Output

1

Solution

題意:

求斯特林數$$ \left{ \begin{array}{} n \ k \end{array}{} \right} % 2$$$$n, m \in [1, 10^9]$$

這題直接求解肯定是會T的, 因此考慮優化.

轉載自sdchr博客

侵刪





代碼附上:

#include<cstdio>
#include<cctype>
using namespace std; inline int read()
{
int x = 0, flag = 1;
char c;
while(! isdigit(c = getchar()))
if(c == '-')
flag *= - 1;
while(isdigit(c))
x = x * 10 + c - '0', c = getchar();
return x * flag;
} void println(int x)
{
if(x < 0)
putchar('-'), x *= - 1;
if(x == 0)
putchar('0');
int ans[1 << 5], top = 0;
while(x)
ans[top ++] = x % 10, x /= 10;
for(; top; top --)
putchar(ans[top - 1] + '0');
putchar('\n');
} long long getQuantity(int x)
{
long long ret = 0; for(int i = 2; i <= x; i <<= 1)
ret += x / i; return ret;
} int calculate(int x, int y)
{
return getQuantity(x) - getQuantity(y) - getQuantity(x - y) == 0;
} int main()
{
int T = read(); while(T --)
{
int n = read(), m = read();
int d = n - m, oddQua = (m + 1) / 2;
println(calculate(d + oddQua - 1, oddQua - 1));
}
}

POJ1430 Binary Stirling Numbers的更多相关文章

  1. poj 1430 Binary Stirling Numbers

    Binary Stirling Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1761   Accepted ...

  2. 【poj1430】Binary Stirling Numbers(斯特林数+组合数)

    传送门 题意: 求\(S(n,m)\% 2\)的值,\(n,m\leq 10^9\),其中\(S(n,m)\)是指第二类斯特林数. 思路: 因为只需要关注奇偶性,所以递推式可以写为: 若\(m\)为偶 ...

  3. POJ 1430 Binary Stirling Numbers (第二类斯特林数、组合计数)

    题目链接 http://poj.org/problem?id=1430 题解 qaq写了道水题-- 在模\(2\)意义下重写一下第二类Stirling数的递推式: \[S(n,m)=S(n-1,m-1 ...

  4. UVALIVE 2431 Binary Stirling Numbers

    转自别人的博客.这里记录一下 这题是定义如下的一个数: S(0, 0) = 1; S(n, 0) = 0 for n > 0;S(0, m) = 0 for m > 0; S(n, m) ...

  5. Binary Stirling Numbers

    http://poj.org/problem?id=1430 题目: 求 第二类 斯特林数 的 奇偶性  即 求 s2 ( n , m ) % 2 : 题解: https://blog.csdn.ne ...

  6. poj 1430 Binary Stirling Number 求斯特林数奇偶性 数形结合| 斯特林数奇偶性与组合数的关系+lucas定理 好题

    题目大意 求子集斯特林数\(\left\{\begin{matrix}n\\m\end{matrix}\right\}\%2\) 方法1 数形结合 推荐一篇超棒的博客by Sdchr 就是根据斯特林的 ...

  7. acm数学(转)

    这个东西先放在这吧.做过的以后会用#号标示出来 1.burnside定理,polya计数法    这个大家可以看brudildi的<组合数学>,那本书的这一章写的很详细也很容易理解.最好能 ...

  8. [转] POJ数学问题

    转自:http://blog.sina.com.cn/s/blog_6635898a0100magq.html 1.burnside定理,polya计数法 这个大家可以看brudildi的<组合 ...

  9. ACM数学

     1.burnside定理,polya计数法 这个专题我单独写了个小结,大家可以简单参考一下:polya 计数法,burnside定理小结 2.置换,置换的运算 置换的概念还是比较好理解的,< ...

随机推荐

  1. 纯虚函数(pure virtual function )和抽象类(abstract base class)

    函数体=0的虚函数称为“纯虚函数”.包含纯虚函数的类称为“抽象类” #include <string> class Animal // This Animal is an abstract ...

  2. hdu 6318

    Long long ago, there was an integer sequence a.Tonyfang think this sequence is messy, so he will cou ...

  3. tornado中文教程

    http://docs.pythontab.com/tornado/introduction-to-tornado/ch2.html#ch2-1 python的各种库的中文教程 http://docs ...

  4. Map容器——HashMap及常用API,及put,get方法解析,哈希码的产生和使用

    Map接口 ①   映射(map)是一个存储键/值对的对象.给定一个键,可以查询到它的值,键和值都是对象; ②   键必须是唯一的,值可以重复; ③   有些映射可以接收null键和null值,而有的 ...

  5. 【bzoj4407】于神之怒加强版 莫比乌斯反演+线性筛

    题目描述 给下N,M,K.求 输入 输入有多组数据,输入数据的第一行两个正整数T,K,代表有T组数据,K的意义如上所示,下面第二行到第T+1行,每行为两个正整数N,M,其意义如上式所示. 输出 如题 ...

  6. 用meta标签让网页用360打开时默认为极速模式

    最近做项目,用360浏览器访问自己的本地网页,发现都是默认在兼容模式下打开,做的淡入淡出轮播效果在兼容模式下看时,感觉切换很生硬.百度,发现360官网帮助里有说明用meta标签控制浏览器内核,网址为h ...

  7. HUST-1407 郁闷的小J

    离线做法:分别处理每个编号上的各种询问和操作,接着就能用树状数组维护. #include <cstdlib> #include <cstdio> #include <cs ...

  8. PHP中的验证码类(完善验证码)

    运行结果: <!--vcode.class.php--> <?php class Vcode { private $width; //宽 private $height; //高 p ...

  9. webpack打包字体图标报错的解决办法

    webpack打包字体图标需要两个加载器  url-loader 和 file-loader 另外  字体图标的引入方式  本来应该是  url("....") 这样的方式,但是w ...

  10. poj 2379 Sum of Consecutive Prime Numbers

                                                                                                        ...