Building a Space Station POJ - 2031

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task. 
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.


x1 y1 z1 r1 
x2 y2 z2 r2 
... 
xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

3
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000
2
30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000
5
5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
0

Sample Output

20.000
0.000
73.834 题意:给出三维的球,四个参数分别为xyz坐标和球的半径,问最少建多长的路可以使得所有的连通起来
思路:遍历每一颗球到其他所有球的长度,之后跑最小生成树
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<sstream>
#include<cmath>
#include<stack>
#include<cstdlib>
#include <vector>
#include<queue>
using namespace std; #define ll long long
#define llu unsigned long long
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
const int maxn = 1e5+;
const ll mod = 1e9+; struct node{
double x,y,z,r;
}a[]; double dis[][];
double mincost[];
bool vis[];
int n;
double prim()
{
for(int i=;i<n;i++)
{
mincost[i] = INF;
vis[i] = false;
}
mincost[]=;
double res = ;
while(true)
{
int v = -;
for(int u=;u<n;u++)
if(!vis[u] && (v == - || mincost[u] < mincost[v]))
v = u;
if(v == -)
break;
vis[v] = true;
res += mincost[v];
for(int u=;u<n;u++)
mincost[u] = min(mincost[u],dis[v][u]);
}
return res;
}
int main()
{ while(scanf("%d",&n) && n)
{
for(int i=;i<n;i++)
{
scanf("%lf %lf %lf %lf",&a[i].x,&a[i].y,&a[i].z,&a[i].r);
}
for(int i=;i<n;i++)
{
for(int j=;j<n;j++)
{
double s=sqrt((a[i].x-a[j].x)*(a[i].x-a[j].x)+(a[i].y-a[j].y)*(a[i].y-a[j].y)+(a[i].z-a[j].z)*(a[i].z-a[j].z))-a[i].r-a[j].r;
if(s<=)
dis[i][j]=;
else
dis[i][j]=s;
}
}
double ans = prim();
printf("%.3f\n",ans);
}
}
												

Building a Space Station POJ - 2031的更多相关文章

  1. (最小生成树) Building a Space Station -- POJ -- 2031

    链接: http://poj.org/problem?id=2031 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6011 ...

  2. Building a Space Station POJ 2031 【最小生成树 prim】

    http://poj.org/problem?id=2031 Description You are a member of the space station engineering team, a ...

  3. C - Building a Space Station - poj 2031

    空间站是有一些球状的房间组成的,现在有一些房间但是没有相互连接,你需要设计一些走廊使他们都相通,当然,有些房间可能会有重合(很神奇的样子,重合距离是0),你需要设计出来最短的走廊使所有的点都连接. 分 ...

  4. Building a Space Station POJ - 2031 三维最小生成树,其实就是板子题

    #include<iostream> #include<cmath> #include<algorithm> #include<cstdio> usin ...

  5. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  6. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  7. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  8. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5173   Accepte ...

  9. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

随机推荐

  1. BZOJ3624: [Apio2008]免费道路(最小生成树)

    题意 题目链接 Sol 首先答案一定是一棵树 这棵树上有一些0边是必须要选的,我们先把他们找出来,如果数量$\geqslant k$显然无解 再考虑继续往里面加0的边,判断能否加到k条即可 具体做法是 ...

  2. FusionCharts使用教程:为JavaScript图表提供数据

    FusionCharts的JavaScript类提供了一系列的函数来提供图表数据. FusionCharts的JavaScript类支持XML或JSON格式的数据.这些数据可以是URL或字符串. 以X ...

  3. 观察者模式(Observe Pattern)

    观察者模式: 当对象存在一对多关系时,使用观察者模式(Observe Pattern).例如:当一个对象被修改时,会通知它的依赖对象. 介绍: 1.意图:定义对象的一种一对多的依赖关系,当一个对象的状 ...

  4. C#运算符、控制流

    1 运算符 1.1 一元运算符: -(负号).+(正号):可以省略 1.2 二元运算符:     优先级,*(乘)./(除).%(取余).+(加).-(减).=(赋值) 二元赋值运算符,=.+=.-= ...

  5. PHP函数:mysql_fetch_assoc指针重置

    本文目前主要讨论mysql_fetch_assoc“指针”如何重置的问题 要了解mysql_fetch_assoc,先看看它与mysql_fetch_row和mysql_fetch_array的关系. ...

  6. php-7.1.11编译选项配置

    ./configure \ --prefix=/usr/local/php-7.1.11 \ --with-config-file-path=/usr/local/php7.1.11/etc \ -- ...

  7. Spring之IOC核心模块详解

    Spring IOC简述 IOC称为控制反转,也有一种说法叫DI(依赖注入).IOC也是spring最核心的模块,Spring的所有工作几乎都围绕着IOC展开. 什么是控制反转呢?简单的说,控制反转就 ...

  8. 腾讯云服务器CVM购买详细过程 选择我们需要的腾讯云服务器

    腾讯云服务商有云服务器.云数据库.CDN.云存储等产品,其中较多的用户会选择腾讯云服务器,因为用途比较广泛,比如用来软件的运行以及网站建设,如今一般都是用云服务器,而不是用虚拟主机,毕竟虚拟主机的性价 ...

  9. 【洛谷3950】部落冲突(LCT维护连通性)

    点此看题面 大致题意: 给你一棵树,\(3\)种操作:连一条边,删一条边,询问两点是否联通. \(LCT\)维护连通性 有一道类似的题目:[BZOJ2049][SDOI2008] Cave 洞穴勘测. ...

  10. Activiti学习记录(五)

    1.排他网关 说明: 1) 一个排他网关对应一个以上的顺序流 2) 由排他网关流出的顺序流都有个conditionExpression元素,在内部维护返回boolean类型的决策结果. 3) 决策网关 ...