题意:

给定$a,b,c$ ,求解满足 $1 \leq m \leq b, 1 \leq n \leq c, a | mn$ 的 $(m,n)$ 数对个数。

$a \leq INTMAX$, $b \leq LONGLONGMAX$

解法

原问题相当于求解 $mn \  mod \  a \equiv 0$ 的数对个数。

$(m \  mod \ a) n \ mod \ a \equiv 0$

这样$m$ ,实际有效的是 $m \ mod \ a$。

这样我们可以将原问题中的 $m$ 分为 $[\frac{b}{a}]$ 段 $m \equiv 1\  to \  a (mod \ a)$,

与一段 $m \equiv 1 \ to(b \mod \ a) (mod \ a)$

考虑求解 $m ∈ [1,t]$ 的 $(m,n)$ 数对个数 $F(t)$。

这样有$$ans = [b/a]F(a) + F(b \ mod \ a)$$

$$F(t) = \sum_{m=1}^t { [\frac{c}{ \frac{a}{(a,m)} }] }$$

记 $d = (m,a)$

$$F(t) = \sum_{d|a}{ [\frac{c}{ \frac{a}{d} }] (the\ cnt\ of\ m\ that (m,a) = d) }$$

$$F(t) = \sum_{d|a}{ [\frac{c}{ \frac{a}{d} }] (the\ cnt\ of\ m\ that (\frac{m}{d},\frac{a}{d}) = 1) }$$

$$F(t) = \sum_{d|a}{ [\frac{c}{ \frac{a}{d} }] (the\ cnt\ of\ i\ that (i,\frac{a}{d}) = 1 and i \leq [\frac{t}{d}]) }$$

后者可以通过容斥$O(\sqrt {\frac{a}{d}})$ 求

#include <bits/stdc++.h>

#define LL long long
#define bit(x) (1<<(x))
#define P 1000000007LL using namespace std; LL b,c;
int a,num[]; LL calc(int n,int m) //1~n中和 m互质的数字个数
{
if(n==) return 0LL;
int tmp = m;
int tot = ;
for(int i=;i*(LL)i<=(LL)m;i++)
{
if(tmp%i==)
{
while(tmp%i==) tmp/=i;
num[++tot] = i;
}
}
if(tmp>) num[++tot] = tmp;
LL ans = ;
for(int S=;S<(<<tot);S++)
{
int tmp = ,k = ;
for(int i=;i<tot;i++) if(bit(i)&S) tmp *= num[i+], k = -k;
ans += k * (n/tmp);
}
return ans % P;
} LL calc(int t)
{
if(t == ) return 0LL;
LL ans = ;
for(int d=;d*(LL)d<=(LL)a;d++)
if(a%d==)
{
int tmpd = d;
ans += (c / (a/tmpd)) % P * calc(t/tmpd,a/tmpd) % P;
if(ans >= P) ans -= P;
if(d*d != a)
{
tmpd = a/d;
ans += (c / (a/tmpd)) % P * calc(t/tmpd,a/tmpd) % P;
if(ans >= P) ans -= P;
}
}
return ans;
} int main()
{
while(cin>>a>>b>>c)
{
LL ans = (b/a)%P * calc(a)%P + calc(b%(LL)a)%P;
cout << ans % P << endl;
}
return ;
}

counting the numbers的更多相关文章

  1. HDU 4349 Xiao Ming's Hope lucas定理

    Xiao Ming's Hope Time Limit:1000MS     Memory Limit:32768KB  Description Xiao Ming likes counting nu ...

  2. Lintcode: Partition Array

    Given an array "nums" of integers and an int "k", Partition the array (i.e move ...

  3. Hdu4349 Xiao Ming's Hope

    Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  4. Partition Array

    Given an array nums of integers and an int k, partition the array (i.e move the elements in "nu ...

  5. hdu 4349 Xiao Ming's Hope 规律

    Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  6. Weekly Contest 128

    1012. Complement of Base 10 Integer Every non-negative integer N has a binary representation.  For e ...

  7. HDU 4349——Xiao Ming's Hope——————【Lucas定理】

    Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  8. HDU 4349 Xiao Ming's Hope 找规律

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4349 Xiao Ming's Hope Time Limit: 2000/1000 MS (Java/ ...

  9. lintcode刷题笔记(一)

    最近开始刷lintcode,记录下自己的答案,数字即为lintcode题目号,语言为python3,坚持日拱一卒吧... (一). 回文字符窜问题(Palindrome problem) 627. L ...

随机推荐

  1. Regex 手机号 座机 正則表達式

    近期在工作中须要推断一个号码是否是手机号,是否是座机号. 在网上也搜到了大家总结的方法,没有直接使用这些方法是由于:手机号码在不断開始新的号码段(比方17x).座机号中个别区号由于行政区域的变化而废除 ...

  2. C# 知识点随手学习网站推荐

    http://www.studyofnet.com/news/list-8881.2-1-1.html

  3. 转载---- 使用opencv源码自己编制android so库的过程

    http://blog.csdn.net/lantishua/article/details/21182965 工作需要,在Android上使用OpenCV.opencv当前的版本(2.4.8)已经有 ...

  4. 求两个有序数组的中位数(4. Median of Two Sorted Arrays)

    先吐槽一下,我好气啊,想了很久硬是没有做出来,题目要求的时间复杂度为O(log(m+n)),我猜到了要用二分法,但是没有想到点子上去.然后上网搜了一下答案,感觉好有罪恶感. 题目原型 正确的思路是:把 ...

  5. 【转】安卓逆向实践5——IDA动态调试so源码

    之前的安卓逆向都是在Java层上面的,但是当前大多数App,为了安全或者效率问题,会把一些重要功能放到native层,所以这里通过例子记录一下使用IDA对so文件进行调试的过程并对要点进行总结. 一. ...

  6. 【推荐】初级.NET程序员,你必须知道的EF知识和经验

    阅读目录   推荐MiniProfiler插件 数据准备 foreach循环的陷进 AutoMapper工具 联表查询统计 性能提升之AsNonUnicode 性能提升之AsNoTracking 多字 ...

  7. sort_action

    li, r = [23,8, 45, 5, 0, -6, 745,8, 8], [] while (len(li) > 0): loop_, min, tag = len(li), li[0], ...

  8. Windows消息、绘图与多线程

    有一个项目,一旦点下按钮后,用死循环不停的读数据,读出后立刻用可视化的方法显示.如果不采用多线程的方法,程序运行都正确,但无法关闭窗口,不清楚是窗口无法通过关闭按钮来接受Windows消息,还是接受了 ...

  9. git (转载)

    文章转载 一:Git是什么? Git是目前世界上最先进的分布式版本控制系统. 二:SVN与Git的最主要的区别? SVN是集中式版本控制系统,版本库是集中放在中央服务器的,而干活的时候,用的都是自己的 ...

  10. A Windows GUI for Appium

    A Windows GUI for Appium If you are new to Appium then please see the Getting started guide for more ...