Go -- LRU算法(缓存淘汰算法)(转)
1. LRU
1.1. 原理
LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。
1.2. 实现
最常见的实现是使用一个链表保存缓存数据,详细算法实现如下:

1. 新数据插入到链表头部;
2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部;
3. 当链表满的时候,将链表尾部的数据丢弃。
1.3. 分析
【命中率】
当存在热点数据时,LRU的效率很好,但偶发性的、周期性的批量操作会导致LRU命中率急剧下降,缓存污染情况比较严重。
【复杂度】
实现简单。
【代价】
命中时需要遍历链表,找到命中的数据块索引,然后需要将数据移到头部。
2. LRU-K(描述有误,请勿参考)
2.1. 原理
LRU-K中的K代表最近使用的次数,因此LRU可以认为是LRU-1。LRU-K的主要目的是为了解决LRU算法“缓存污染”的问题,其核心思想是将“最近使用过1次”的判断标准扩展为“最近使用过K次”。
2.2. 实现
相比LRU,LRU-K需要多维护一个队列,用于记录所有缓存数据被访问的历史。只有当数据的访问次数达到K次的时候,才将数据放入缓存。当需要淘汰数据时,LRU-K会淘汰第K次访问时间距当前时间最大的数据。详细实现如下:

1. 数据第一次被访问,加入到访问历史列表;
2. 如果数据在访问历史列表里后没有达到K次访问,则按照一定规则(FIFO,LRU)淘汰;
3. 当访问历史队列中的数据访问次数达到K次后,将数据索引从历史队列删除,将数据移到缓存队列中,并缓存此数据,缓存队列重新按照时间排序;
4. 缓存数据队列中被再次访问后,重新排序;
5. 需要淘汰数据时,淘汰缓存队列中排在末尾的数据,即:淘汰“倒数第K次访问离现在最久”的数据。
LRU-K具有LRU的优点,同时能够避免LRU的缺点,实际应用中LRU-2是综合各种因素后最优的选择,LRU-3或者更大的K值命中率会高,但适应性差,需要大量的数据访问才能将历史访问记录清除掉。
2.3. 分析
【命中率】
LRU-K降低了“缓存污染”带来的问题,命中率比LRU要高。
【复杂度】
LRU-K队列是一个优先级队列,算法复杂度和代价比较高。
【代价】
由于LRU-K还需要记录那些被访问过、但还没有放入缓存的对象,因此内存消耗会比LRU要多;当数据量很大的时候,内存消耗会比较可观。
LRU-K需要基于时间进行排序(可以需要淘汰时再排序,也可以即时排序),CPU消耗比LRU要高。
3. Two queues(2Q)
3.1. 原理
Two queues(以下使用2Q代替)算法类似于LRU-2,不同点在于2Q将LRU-2算法中的访问历史队列(注意这不是缓存数据的)改为一个FIFO缓存队列,即:2Q算法有两个缓存队列,一个是FIFO队列,一个是LRU队列。
3.2. 实现
当数据第一次访问时,2Q算法将数据缓存在FIFO队列里面,当数据第二次被访问时,则将数据从FIFO队列移到LRU队列里面,两个队列各自按照自己的方法淘汰数据。详细实现如下:

1. 新访问的数据插入到FIFO队列;
2. 如果数据在FIFO队列中一直没有被再次访问,则最终按照FIFO规则淘汰;
3. 如果数据在FIFO队列中被再次访问,则将数据移到LRU队列头部;
4. 如果数据在LRU队列再次被访问,则将数据移到LRU队列头部;
5. LRU队列淘汰末尾的数据。
注:上图中FIFO队列比LRU队列短,但并不代表这是算法要求,实际应用中两者比例没有硬性规定。
3.3. 分析
【命中率】
2Q算法的命中率要高于LRU。
【复杂度】
需要两个队列,但两个队列本身都比较简单。
【代价】
FIFO和LRU的代价之和。
2Q算法和LRU-2算法命中率类似,内存消耗也比较接近,但对于最后缓存的数据来说,2Q会减少一次从原始存储读取数据或者计算数据的操作。
4. Multi Queue(MQ)
4.1. 原理
MQ算法根据访问频率将数据划分为多个队列,不同的队列具有不同的访问优先级,其核心思想是:优先缓存访问次数多的数据。
4.2. 实现
MQ算法将缓存划分为多个LRU队列,每个队列对应不同的访问优先级。访问优先级是根据访问次数计算出来的,例如
详细的算法结构图如下,Q0,Q1....Qk代表不同的优先级队列,Q-history代表从缓存中淘汰数据,但记录了数据的索引和引用次数的队列:

如上图,算法详细描述如下:
1. 新插入的数据放入Q0;
2. 每个队列按照LRU管理数据;
3. 当数据的访问次数达到一定次数,需要提升优先级时,将数据从当前队列删除,加入到高一级队列的头部;
4. 为了防止高优先级数据永远不被淘汰,当数据在指定的时间里访问没有被访问时,需要降低优先级,将数据从当前队列删除,加入到低一级的队列头部;
5. 需要淘汰数据时,从最低一级队列开始按照LRU淘汰;每个队列淘汰数据时,将数据从缓存中删除,将数据索引加入Q-history头部;
6. 如果数据在Q-history中被重新访问,则重新计算其优先级,移到目标队列的头部;
7. Q-history按照LRU淘汰数据的索引。
4.3. 分析
【命中率】
MQ降低了“缓存污染”带来的问题,命中率比LRU要高。
【复杂度】
MQ需要维护多个队列,且需要维护每个数据的访问时间,复杂度比LRU高。
【代价】
MQ需要记录每个数据的访问时间,需要定时扫描所有队列,代价比LRU要高。
注:虽然MQ的队列看起来数量比较多,但由于所有队列之和受限于缓存容量的大小,因此这里多个队列长度之和和一个LRU队列是一样的,因此队列扫描性能也相近。
5. LRU类算法对比
由于不同的访问模型导致命中率变化较大,此处对比仅基于理论定性分析,不做定量分析。
|
对比点 |
对比 |
|
命中率 |
LRU-2 > MQ(2) > 2Q > LRU |
|
复杂度 |
LRU-2 > MQ(2) > 2Q > LRU |
|
代价 |
LRU-2 > MQ(2) > 2Q > LRU |
实际应用中需要根据业务的需求和对数据的访问情况进行选择,并不是命中率越高越好。例如:虽然LRU看起来命中率会低一些,且存在”缓存污染“的问题,但由于其简单和代价小,实际应用中反而应用更多。
Go -- LRU算法(缓存淘汰算法)(转)的更多相关文章
- LRU算法---缓存淘汰算法
计算机中的缓存大小是有限的,如果对所有数据都缓存,肯定是不现实的,所以需要有一种淘汰机制,用于将一些暂时没有用的数据给淘汰掉,以换入新鲜的数据进来,这样可以提高缓存的命中率,减少磁盘访问的次数. LR ...
- 04 | 链表(上):如何实现LRU缓存淘汰算法?
今天我们来聊聊“链表(Linked list)”这个数据结构.学习链表有什么用呢?为了回答这个问题,我们先来讨论一个经典的链表应用场景,那就是+LRU+缓存淘汰算法. 缓存是一种提高数据读取性能的技术 ...
- 数据结构与算法之美 06 | 链表(上)-如何实现LRU缓存淘汰算法
常见的缓存淘汰策略: 先进先出 FIFO 最少使用LFU(Least Frequently Used) 最近最少使用 LRU(Least Recently Used) 链表定义: 链表也是线性表的一种 ...
- 链表:如何实现LRU缓存淘汰算法?
缓存淘汰策略: FIFO:先入先出策略 LFU:最少使用策略 LRU:最近最少使用策略 链表的数据结构: 可以看到,数组需要连续的内存空间,当内存空间充足但不连续时,也会申请失败触发GC,链表则可 ...
- 《数据结构与算法之美》 <04>链表(上):如何实现LRU缓存淘汰算法?
今天我们来聊聊“链表(Linked list)”这个数据结构.学习链表有什么用呢?为了回答这个问题,我们先来讨论一个经典的链表应用场景,那就是 LRU 缓存淘汰算法. 缓存是一种提高数据读取性能的技术 ...
- 昨天面试被问到的 缓存淘汰算法FIFO、LRU、LFU及Java实现
缓存淘汰算法 在高并发.高性能的质量要求不断提高时,我们首先会想到的就是利用缓存予以应对. 第一次请求时把计算好的结果存放在缓存中,下次遇到同样的请求时,把之前保存在缓存中的数据直接拿来使用. 但是, ...
- 图解缓存淘汰算法二之LFU
1.概念分析 LFU(Least Frequently Used)即最近最不常用.从名字上来分析,这是一个基于访问频率的算法.与LRU不同,LRU是基于时间的,会将时间上最不常访问的数据淘汰;LFU为 ...
- 缓存淘汰算法之FIFO
前段时间去网易面试,被这个问题卡住,先做总结如下: 常用缓存淘汰算法 FIFO类:First In First Out,先进先出.判断被存储的时间,离目前最远的数据优先被淘汰. LRU类:Least ...
- 缓存淘汰算法--LRU算法
1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是"如果数据最近被访问过,那么将来被访问的几率也 ...
随机推荐
- C指针问题
<!DOCTYPE html> 多级c指针传值问题 /* GitHub stylesheet for MarkdownPad (http://markdownpad.com) / / Au ...
- Python之多线程与多进程(一)
多线程 多线程是程序在同样的上下文中同时运行多条线程的能力.这些线程共享同一个进程的资源,可以在并发模式(单核处理器)或并行模式(多核处理器)下执行多个任务 多线程有以下几个优点: 持续响应:在单线程 ...
- 关于dispatch_sync死锁问题
首先,我们来看下下面一个例子: 代码:(串行队列里同步线程嵌套) NSLog(@"haha"); dispatch_queue_t queue = dispatch ...
- xml编辑无提示?这么破!
在学习testng这个单元测试框架时,如果咱们碰到了编辑测试套件xml,不提示的情况(有提示方便咱们学习,并且testng的测试套件定义必须按照他的dtd文件约束来),咱们可以按照下面的步骤去解决这个 ...
- python + selenium - 自动化环境搭建
1. 安装python (1)下载地址:https://www.python.org/downloads/windows/ (2)安装方式:默认安装即可 (3)环境变量配置:打开[系统属性]-[环境变 ...
- Leetcode 454.四数相加II
四数相加II 给定四个包含整数的数组列表 A , B , C , D ,计算有多少个元组 (i, j, k, l) ,使得 A[i] + B[j] + C[k] + D[l] = 0. 为了使问题简单 ...
- HDU 5402 : Travelling Salesman Problem
题目大意:n*m的格子,从左上角走到右下角,每个格子只能走一遍,每个格子上有一个非负数,要让途径的数字和最大,最后要输出路径 思路:显然茹果n,m有一个是奇数的话所有格子的数字都能被我吃到,如果都是偶 ...
- 刷题总结——(一道很妙的题)Resistance(ssoj 欧几里得 )
题解: 题目背景 151006 T1 题目描述 Picks 喜欢电路.这天他在研究元电路的时候,需要一个阻值为 (p/q)Ω 的电阻,然而他家中只有一大堆电阻为 1Ω 电阻.由于技术问题,Picks ...
- 算法复习——数位dp
开头由于不知道讲啥依然搬讲义 对于引入的这个问题,讲义里已经很清楚了,我更喜欢用那个建树的理解···· 相当于先预处理f,然后从起点开始在树上走··记录目前已经找到了多少个满足题意的数k,如果枚举到第 ...
- Django AUTHENTICATION_BACKENDS
指定认证后端 Django维护一个”authentication backends”的列表用来测试认证.当调用 django.contrib.auth.authenticate() — Django将 ...