UVA 10042 Smith Numbers(数论)
Smith Numbers
Background
While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University , noticed that the telephone number of his brother-in-law H. Smith had the following peculiar property: The sum of the digits of that number was equal to the sum
of the digits of the prime factors of that number. Got it? Smith's telephone number was 493-7775. This number can be written as the product of its prime factors in the following way:

The sum of all digits of the telephone number is4+9+3+7+7+7+5=42, and the sum of the digits of its prime factors is equally3+5+5+6+5+8+3+7=42. Wilansky was so amazed by his discovery that he named this type of numbers after his brother-in-law: Smith numbers.
As this observation is also true for every prime number, Wilansky decided later that a (simple and unsophisticated) prime number is not worth being a Smith number and he excluded them from the definition.
Problem
Wilansky published an article about Smith numbers in the Two Year College Mathematics Journal and was able to present a whole collection of different Smith numbers: For example, 9985 is a Smith number and so is 6036. However, Wilansky was not able
to give a Smith number which was larger than the telephone number of his brother-in-law. It is your task to find Smith numbers which are larger than 4937775.
Input
The input consists of several test cases, the number of which you are given in the first line of the input.
Each test case consists of one line containing a single positive integer smaller than 109.
Output
For every input value n, you are to compute the smallest Smith number which is larger than
nand print each number on a single line. You can assume that such a number exists.
Sample Input
1
4937774
Sample Output
4937775
题意:假设一个合数的各个数字之和等于该数全部素因子的各个数字之和。则称这个数是Smith数。给出一个n,求大于n的最小的Smith数是多少。
分析:对要推断的数进行素因子分解就可以。由于所求数小于 10^9,若一个数是合数,则其素因子至少有一个小于或等于sqrt(10^9),则可先把2 - sqrt(10^9) 之间的素数保存起来。
#include<stdio.h>
#include<string.h>
const int MAXN = 100005;
int vis[MAXN], prime[10000], num; void get_prime()
{
num = 0;
memset(vis, 0, sizeof(vis));
vis[0] = vis[1] = 1;
for(int i = 2; i < MAXN; i++)
{
if(!vis[i])
{
prime[num++] = i;
for(int j = i + i; j < MAXN; j += i)
vis[j] = 1;
}
}
} bool is_prime(int x)
{
if(x == 0 || x == 1) return false;
if(x == 2) return true;
if(x % 2 == 0) return false;
for(int i = 3; i * i <= x; i += 2)
if(x % i == 0)
return false;
return true;
} int sum(int x)
{
int res = 0;
while(x)
{
res += x % 10;
x /= 10;
}
return res;
} int main()
{
get_prime();
int n, t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i = n + 1; ; i++)
{
if(is_prime(i))
continue;
int s = 0, tmp = i, tmpsum = sum(i);
for(int j = 0; j < num; j++)
{
if(tmp % prime[j] == 0)
{
while(tmp % prime[j] == 0)
{
s += sum(prime[j]);
tmp /= prime[j];
}
if(is_prime(tmp))
{
s += sum(tmp);
break;
}
}
}
if(tmpsum == s)
{
printf("%d\n",i);
break;
}
}
}
return 0;
}
UVA 10042 Smith Numbers(数论)的更多相关文章
- UVA 10006 - Carmichael Numbers 数论(快速幂取模 + 筛法求素数)
Carmichael Numbers An important topic nowadays in computer science is cryptography. Some people e ...
- Uva - 12050 Palindrome Numbers【数论】
题目链接:uva 12050 - Palindrome Numbers 题意:求第n个回文串 思路:首先可以知道的是长度为k的回文串个数有9*10^(k-1),那么依次计算,得出n是长度为多少的串,然 ...
- POJ 1142 Smith Numbers(史密斯数)
Description 题目描述 While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Leh ...
- UVa 10006 - Carmichael Numbers
UVa 10006 - Carmichael Numbers An important topic nowadays in computer science is cryptography. Some ...
- Smith Numbers - PC110706
欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/uva10042.html 原创:Smit ...
- poj 1142 Smith Numbers
Description While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh U ...
- Smith Numbers POJ - 1142 (暴力+分治)
题意:给定一个N,求一个大于N的最小的Smith Numbers,Smith Numbers是一个合数,且分解质因数之后上质因子每一位上的数字之和 等于 其本身每一位数字之和(别的博客偷的题意) 思路 ...
- POJ 1142:Smith Numbers(分解质因数)
Smith Numbers Time Limit: 1000MS Memory Limit: 10000K Total Submiss ...
- UVA.136 Ugly Numbers (优先队列)
UVA.136 Ugly Numbers (优先队列) 题意分析 如果一个数字是2,3,5的倍数,那么他就叫做丑数,规定1也是丑数,现在求解第1500个丑数是多少. 既然某数字2,3,5倍均是丑数,且 ...
随机推荐
- Linux Shell系列教程之(八)Shell printf命令详解
本文是Linux Shell系列教程的第(八)篇,更多shell教程请看:Linux Shell系列教程 在上一篇:Linux Shell系列教程之(七)Shell输出这篇文章中,已经对Shell p ...
- iOS学习笔记38-MJExtension使用
一.MJExtension第三方框架 我们在iOS开发过程中,我们常常需要将字典数据(也就是JSON数据)与Model模型之间的转化,例如网络请求返回的微博数据.等等,如果我们自己全部手动去创建模型并 ...
- 【bzoj1959】[Ahoi2005]LANE 航线规划 树链剖分+线段树
题目描述 对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系——一个巨大的由千百万星球构成的Samuel星系. 星际空间站的Samuel II巨型计算 ...
- [暑假集训--数位dp]hdu3709 Balanced Number
A balanced number is a non-negative integer that can be balanced if a pivot is placed at some digit. ...
- aoj 2226 Merry Christmas
Merry Christmas Time Limit : 8 sec, Memory Limit : 65536 KB Problem J: Merry Christmas International ...
- 树上的路径 BZOJ 3784
树上的路径 [问题描述] 给定一个N个结点的树,结点用正整数1..N编号.每条边有一个正整数权值.用d(a,b)表示从结点a到结点b路边上经过边的权值.其中要求a<b.将这n*(n-1)/2个距 ...
- How to build and run ARM Linux on QEMU from scratch
This blog shows how to run ARM Linux on QEMU! This can be used as a base for later projects using th ...
- C++ 细节知识
1.typedef struct child {string name;struct child* next;}; child* head; head = (child*)malloc(sizeof( ...
- Drupal service module 介绍
https://www.ostraining.com/blog/drupal/services/ https://www.drupal.org/node/1246470 https://www.dru ...
- Android内存泄漏总结
内存泄漏问题老生常谈,很常见也很难根治,今天我在这里总结一下内存泄漏的原因和解决方法: 所谓内存泄漏,就是本该被回收的对象,由于某些原因不能被回收,继续占用堆内存的这种状态,导致的结果也是显而易见的, ...