Smith Numbers

Background

While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh University , noticed that the telephone number of his brother-in-law H. Smith had the following peculiar property: The sum of the digits of that number was equal to the sum
of the digits of the prime factors of that number. Got it? Smith's telephone number was 493-7775. This number can be written as the product of its prime factors in the following way:

The sum of all digits of the telephone number is4+9+3+7+7+7+5=42, and the sum of the digits of its prime factors is equally3+5+5+6+5+8+3+7=42. Wilansky was so amazed by his discovery that he named this type of numbers after his brother-in-law: Smith numbers.

As this observation is also true for every prime number, Wilansky decided later that a (simple and unsophisticated) prime number is not worth being a Smith number and he excluded them from the definition.

Problem

Wilansky published an article about Smith numbers in the Two Year College Mathematics Journal and was able to present a whole collection of different Smith numbers: For example, 9985 is a Smith number and so is 6036. However, Wilansky was not able
to give a Smith number which was larger than the telephone number of his brother-in-law. It is your task to find Smith numbers which are larger than 4937775.

Input

The input consists of several test cases, the number of which you are given in the first line of the input.

Each test case consists of one line containing a single positive integer smaller than 109.

Output

For every input value n, you are to compute the smallest Smith number which is larger than
nand print each number on a single line. You can assume that such a number exists.

Sample Input

1
4937774

Sample Output

4937775
题意:假设一个合数的各个数字之和等于该数全部素因子的各个数字之和。则称这个数是Smith数。给出一个n,求大于n的最小的Smith数是多少。
分析:对要推断的数进行素因子分解就可以。由于所求数小于 10^9,若一个数是合数,则其素因子至少有一个小于或等于sqrt(10^9),则可先把2 - sqrt(10^9) 之间的素数保存起来。 
#include<stdio.h>
#include<string.h>
const int MAXN = 100005;
int vis[MAXN], prime[10000], num; void get_prime()
{
num = 0;
memset(vis, 0, sizeof(vis));
vis[0] = vis[1] = 1;
for(int i = 2; i < MAXN; i++)
{
if(!vis[i])
{
prime[num++] = i;
for(int j = i + i; j < MAXN; j += i)
vis[j] = 1;
}
}
} bool is_prime(int x)
{
if(x == 0 || x == 1) return false;
if(x == 2) return true;
if(x % 2 == 0) return false;
for(int i = 3; i * i <= x; i += 2)
if(x % i == 0)
return false;
return true;
} int sum(int x)
{
int res = 0;
while(x)
{
res += x % 10;
x /= 10;
}
return res;
} int main()
{
get_prime();
int n, t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i = n + 1; ; i++)
{
if(is_prime(i))
continue;
int s = 0, tmp = i, tmpsum = sum(i);
for(int j = 0; j < num; j++)
{
if(tmp % prime[j] == 0)
{
while(tmp % prime[j] == 0)
{
s += sum(prime[j]);
tmp /= prime[j];
}
if(is_prime(tmp))
{
s += sum(tmp);
break;
}
}
}
if(tmpsum == s)
{
printf("%d\n",i);
break;
}
}
}
return 0;
}

UVA 10042 Smith Numbers(数论)的更多相关文章

  1. UVA 10006 - Carmichael Numbers 数论(快速幂取模 + 筛法求素数)

      Carmichael Numbers  An important topic nowadays in computer science is cryptography. Some people e ...

  2. Uva - 12050 Palindrome Numbers【数论】

    题目链接:uva 12050 - Palindrome Numbers 题意:求第n个回文串 思路:首先可以知道的是长度为k的回文串个数有9*10^(k-1),那么依次计算,得出n是长度为多少的串,然 ...

  3. POJ 1142 Smith Numbers(史密斯数)

    Description 题目描述 While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Leh ...

  4. UVa 10006 - Carmichael Numbers

    UVa 10006 - Carmichael Numbers An important topic nowadays in computer science is cryptography. Some ...

  5. Smith Numbers - PC110706

    欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/uva10042.html 原创:Smit ...

  6. poj 1142 Smith Numbers

    Description While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh U ...

  7. Smith Numbers POJ - 1142 (暴力+分治)

    题意:给定一个N,求一个大于N的最小的Smith Numbers,Smith Numbers是一个合数,且分解质因数之后上质因子每一位上的数字之和 等于 其本身每一位数字之和(别的博客偷的题意) 思路 ...

  8. POJ 1142:Smith Numbers(分解质因数)

                                   Smith Numbers Time Limit: 1000MS   Memory Limit: 10000K Total Submiss ...

  9. UVA.136 Ugly Numbers (优先队列)

    UVA.136 Ugly Numbers (优先队列) 题意分析 如果一个数字是2,3,5的倍数,那么他就叫做丑数,规定1也是丑数,现在求解第1500个丑数是多少. 既然某数字2,3,5倍均是丑数,且 ...

随机推荐

  1. 设计模式(十六)迭代器模式 Iterator

    什么时候需要用到迭代器模式? 有许多中方法,可以把对象堆起来放进一个集合(可以是数组.堆栈.列表.哈希表,等等). 每一种类型的集合,都有各自适用的时机.但是某个时间段,客户端可能希望去遍历这个集合. ...

  2. gcd-模板+最小公倍数

    #include<iostream> #include<cstdio> #include<algorithm> using namespace std; int G ...

  3. 【CCF】有趣的数 数位dp

    [思路] dp[i][j]表示前i个数为第j种状态,考虑6种状态 0: 出现且仅出现 2 1: 出现且仅出现 2 0 2: 出现且仅出现 2 3 3: 出现且仅出现 2 0 1 4: 出现且仅出现 2 ...

  4. JS当中利用&&和||简化代码

    ; ){ add_level = ; } ){ add_level = ; } ){ add_level = ; } ){ add_level = ; } else { add_level = ; } ...

  5. Mysql常用语句记录

    建表语句,带自增字段 create table test ( id int auto_increment primary key, name ) not null, password ) not nu ...

  6. bzoj 2798 [Poi2012]Bidding 博弈论+dp

    题目大意 A和B两个人在玩一个游戏,这个游戏是他们轮流操作一对整数(x,y). 初始时(x,y)=(1,0),可以进行三种操作: 将(x,y)变成(1,x+y). 将(x,y)变成(2x,y). 将( ...

  7. 解决使用webbrowser请求url时数据传递丢失问题

    问题: 使用“ this.webBrowser.Url = new Uri(webBrowserUrl);”方式请求Action(Java Web)并传递数据,在webBrowserUrl中携带的参数 ...

  8. java三种匿名的方式开启线程

    package demo04; /* * 使用匿名内部类,实现多线程程序 * 前提:继承或者接口实现 * new 父类或者接口(){ * 重写 抽象方法 * } */ public class Thr ...

  9. 洛谷—— P1561 [USACO12JAN]爬山Mountain Climbing

    https://daniu.luogu.org/problemnew/show/P1561 题目描述 Farmer John has discovered that his cows produce ...

  10. vue框架及其

    Vue常用UI框架 PC端: 1. ElementUI:http://element-cn.eleme.io/#/zh-CN 2. iView:https://www.iviewui.com/ 3. ...