Description

There are N points in total. Every point moves in certain direction and certain speed. We want to know at what time that the largest distance between any two points would be minimum. And also, we require you to calculate that minimum distance. We guarantee that no two points will move in exactly same speed and direction.      
              

Input

The rst line has a number T (T <= 10) , indicating the number of test cases.        For each test case, first line has a single number N (N <= 300), which is the number of points.        For next N lines, each come with four integers X i, Y i, VX i and VY i (-10 6 <= X i, Y i <= 10 6, -10 2 <= VX i , VY i <= 10 2), (X i, Y i) is the position of the i th point, and (VX i , VY i) is its speed with direction. That is to say, after 1 second, this point will move to (X i + VX i , Y i + VY i).      
              

Output

For test case X, output "Case #X: " first, then output two numbers, rounded to 0.01, as the answer of time and distance.      
              

Sample Input

2
2
0 0 1 0
2 0 -1 0
2
0 0 1 0
2 1 -1 0

Sample Output

Case #1: 1.00 0.00
Case #2: 1.00 1.00

题目大意就是给定n个点的坐标和它x和y方向的分速度,要求在任意时刻两两点之间距离最大值中的最小值。

根据距离公式可以推断出对于某两个点在t逐渐增大的过程中距离服从二次函数。

于是就是对于n个二次抛物线求任意时刻最高点合成的图像。

可以证明(反证)合成的图像也是由两个单调性相反的图像构成(类似于抛物线)。

于是可以采用模拟退火的退化(类似爬山算法)来查找最值。

从minT从0时刻出发,首先设定步长dt = 1e8。然后对于minT-dt和minT+dt讨论,如果使最大值变小,自然更新minT,然后按比例k衰减dt。

直到dt满足精度要求。

进过测试比例k=0.9是可以满足的,跑了530MS;k = 0.95略慢些,跑了1.3S。

网上也有好多使用的是三分法。

这里贴出退火的代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <string>
#define LL long long
#define eps 1e-5 using namespace std; typedef pair<double, double> pdd; int x[], y[], vx[], vy[], n;
double minT, minDis; double pow2(double k)
{
return k*k;
} double calDis(double t)
{
double dis2 = ;
for (int i = ; i < n; ++i)
{
for (int j = i+; j < n; ++j)
{
if (i == j)
continue;
dis2 = max(dis2,
pow2(x[i]+vx[i]*t-x[j]-vx[j]*t) + pow2(y[i]+vy[i]*t-y[j]-vy[j]*t));
}
}
return sqrt(dis2);
} void qt()
{
double dt = 1e8, t, dis, k = 0.9, v;
minT = ;
minDis = calDis(minT); while (dt > eps)
{
dis = calDis(minT+dt);
t = minT + dt;
if (minT-dt >= )
{
v = calDis(minT-dt);
if (v < dis)
{
dis = v;
t = minT - dt;
}
}
if (dis < minDis)
{
minDis = dis;
minT = t;
}
dt *= k;
}
} void Work()
{
scanf("%d", &n);
for (int i = ; i < n; ++i)
scanf("%d%d%d%d", &x[i], &y[i], &vx[i], &vy[i]);
qt();
} int main()
{
//freopen("test.in", "r", stdin);
int T;
scanf("%d", &T);
for (int times = ; times <= T; ++times)
{
printf("Case #%d: ", times);
Work();
printf("%.2lf %.2lf\n", minT, minDis);
}
return ;
}

ACM学习历程—HDU4717 The Moving Points(模拟退火 || 三分法)的更多相关文章

  1. ACM学习历程—POJ3090 Visible Lattice Points(容斥原理 || 莫比乌斯)

    Description A lattice point (x, y) in the first quadrant (x and y are integers greater than or equal ...

  2. HDU-4717 The Moving Points(凸函数求极值)

    The Moving Points Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  3. ACM学习历程——HDU5017 Ellipsoid(模拟退火)(2014西安网赛K题)

    ---恢复内容开始--- Description Given a 3-dimension ellipsoid(椭球面) your task is to find the minimal distanc ...

  4. 完成了C++作业,本博客现在开始全面记录acm学习历程,真正的acm之路,现在开始

    以下以目前遇到题目开始记录,按发布时间排序 ACM之递推递归 ACM之数学题 拓扑排序 ACM之最短路径做题笔记与记录 STL学习笔记不(定期更新) 八皇后问题解题报告

  5. ACM学习历程—HDU 5512 Pagodas(数学)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5512 学习菊苣的博客,只粘链接,不粘题目描述了. 题目大意就是给了初始的集合{a, b},然后取集合里 ...

  6. ACM学习历程—HDU5521 Meeting(图论)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5521 学习菊苣的博客,只粘链接,不粘题目描述了. 题目大意就是一个人从1开始走,一个人从n开始走.让最 ...

  7. ACM学习历程—HDU2476 String painter(动态规划)

    http://acm.hdu.edu.cn/showproblem.php?pid=2476 题目大意是给定一个起始串和一个目标串,然后每次可以将某一段区间染成一种字符,问从起始串到目标串最少需要染多 ...

  8. ACM学习历程—HDU5700 区间交(树状数组 && 前缀和 && 排序)

    http://acm.hdu.edu.cn/showproblem.php?pid=5700 这是这次百度之星初赛2B的第五题.省赛回来看了一下,有这样一个思路:对于所有的区间排序,按左值排序. 然后 ...

  9. ACM学习历程—HDU5701 中位数计数(中位数 && 计数排序)

    http://acm.hdu.edu.cn/showproblem.php?pid=5701 这是这次百度之星初赛2B的第六题.之前白山云做过类似的题,省赛完回来,我看了一下大概就有这样的思路:首先枚 ...

随机推荐

  1. Java NIO之Charset类字符编码对象

    介绍 java中使用Charset来表示编码对象 This class defines methods for creating decoders and encoders and for retri ...

  2. 用buildroot qemu 执行 Android 系统

    准备 qemu. 编译 arm 的执行环境 $ wget http://wiki.qemu-project.org/download/qemu-2.0.0.tar.bz2 $ tar xzvf qem ...

  3. freopen - C/C++文件输入输出利器

    freopen以前经常使用,比较方便,可以当作模板,在中间替换为自己的代码即可使用. ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 #include <stdio.h&g ...

  4. hunnu--11548--找啊找啊找朋友

    找啊找啊找朋友 Time Limit: 1000ms, Special Time Limit:2500ms, Memory Limit:65536KB Total submit users: 14,  ...

  5. testVC.modalPresentationStyle = UIModalPresentationFormSheet; 更改 VC大小

    本文转载至 http://www.cocoachina.com/bbs/simple/?t31199.html TestViewController *testVC = [[TestViewContr ...

  6. python 基础 6.0 异常的常用形式

    一. 异常   异常既是一个时间,该事件会在程序执行过程中发生,影响了程序的正常执行.一般情况下,在python无法正常处理程序时就会发生一个异常.异常是python对象,表示一个错误.当python ...

  7. EasyPlayerPro windows播放器本地音频播放音量控制实现

    背景描述 作为一个播放器, 除了能播放视频和声音外,音量控制是绝对不能缺少的功能; 本文在音视频播放的基础上,增加对音量的控制: 实现流程 调用mixerGetDevCaps获取音频输出设备列表; 打 ...

  8. vue入门(二) 让axios发送表单形式数据

    (一) 使用 axios vue-axios qs 1.qs是必不可少的插件 npm install --save axios vue-axios qs 2.安装完成后,在main.js插入以下代码 ...

  9. React-Native开源项目学习

    https://github.com/liuhongjun719/react-native-DaidaiHelperNew 借贷助手https://github.com/liuhongjun719/r ...

  10. 【网络与系统安全】利用burpsuite进行重放攻击

    重放攻击的定义 所谓重放攻击就是攻击者发送一个目的主机已接收过的包,来达到欺骗系统的目的,主要用于身份认证过程. 原理 重放攻击的基本原理就是把以前窃听到的数据原封不动地重新发送给接收方.如果攻击者知 ...