HDU_3333 Turing Tree 【线段树 + 离散化】
一、题目
二、分析
这题主要还是在区间的处理上。
为了保证区间内的数没有重复的,那么可以对区间按右端点从小到大排序,这样对原数组处理时,尽量保证不重复的元素靠右(可以假设右端点固定考虑),就可以保证区间求出来的值是不重复的,对于重复的就把前面位置出现的这个数减掉(即赋值为0)即可。
由于原数组的数比较大,要记录其之前的位置无法直接开数组,所以需要离散化。后面的就是普通的线段树的单点修改和区间查询了。
三、AC代码
#include <bits/stdc++.h> using namespace std;
#define ll long long
#define Min(a,b) ((a)>(b)?(b):(a))
#define Max(a,b) ((a)>(b)?(a):(b))
#define lson (rt<<1)
#define rson (rt<<1|1)
#define P pair<int, int>
const int MAXN = 3e4;
const int MAXQ = 1e5;
ll A[MAXN + 13], Sum[MAXN<<2];
int Pre[MAXN + 13];
vector<ll> vec;
struct node
{
int L, R, id;
bool operator < (const node &t) const {
return R < t.R;
}
}B[MAXQ + 13];
ll Ans[MAXQ + 13]; int getPos(ll x)
{
return lower_bound(vec.begin(), vec.end(), x) - vec.begin();
}
void Push_up(int rt)
{
Sum[rt] = Sum[lson] + Sum[rson];
return;
}
void Update(int rt, int l, int r, int p, ll val)
{
if(l == r) {
Sum[rt] = val;
return;
}
int mid = (l + r) >> 1;
if(p <= mid)
Update(lson, l, mid, p, val);
else
Update(rson, mid + 1, r, p, val);
Push_up(rt);
}
ll Query(int rt, int l, int r, int L, int R)
{
if(L <= l && r <= R) {
return Sum[rt];
}
int mid = (l + r) >> 1;
ll ans = 0;
if(L <= mid)
ans += Query(lson, l, mid, L, R);
if(R > mid)
ans += Query(rson, mid + 1, r, L, R);
return ans;
} int main()
{
//freopen("input.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
int T;
scanf("%d", &T);
while(T--) {
int N, Q;
scanf("%d", &N);
vec.clear();
for(int i = 1; i <= N; i++) {
scanf("%lld", &A[i]);
vec.push_back(A[i]);
}
sort(vec.begin(), vec.end());
vec.erase(unique(vec.begin(), vec.end()), vec.end());
scanf("%d", &Q);
for(int i = 0; i < Q; i++) {
scanf("%d%d", &B[i].L, &B[i].R);
B[i].id = i;
}
sort(B, B + Q);
memset(Sum, 0, sizeof(Sum));
memset(Pre, -1, sizeof(Pre)); //某个数字之前出现的位置
for(int i = 1, j = 0; i <= N; i++) {
int p = getPos(A[i]);
if(Pre[p] != -1) {
Update(1, 1, N, Pre[p], 0);
}
Pre[p] = i;
Update(1, 1, N, i, A[i]);
for(; j < Q; j++) {
if(B[j].R != i) {
break;
}
Ans[B[j].id] = Query(1, 1, N, B[j].L, B[j].R);
}
}
for(int i = 0; i < Q; i++) {
printf("%lld\n", Ans[i]);
}
}
return 0;
}
HDU_3333 Turing Tree 【线段树 + 离散化】的更多相关文章
- HDU 3333 Turing Tree (线段树)
Turing Tree Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...
- HDU 3333 Turing Tree 线段树+离线处理
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3333 Turing Tree Time Limit: 6000/3000 MS (Java/Othe ...
- SPOJ D-query && HDU 3333 Turing Tree (线段树 && 区间不相同数个数or和 && 离线处理)
题意 : 给出一段n个数的序列,接下来给出m个询问,询问的内容SPOJ是(L, R)这个区间内不同的数的个数,HDU是不同数的和 分析 : 一个经典的问题,思路是将所有问询区间存起来,然后按右端点排序 ...
- poj 2528 Mayor's posters(线段树+离散化)
/* poj 2528 Mayor's posters 线段树 + 离散化 离散化的理解: 给你一系列的正整数, 例如 1, 4 , 100, 1000000000, 如果利用线段树求解的话,很明显 ...
- D - Mayor's posters(线段树+离散化)
题目: The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campai ...
- 主席树||可持久化线段树+离散化 || 莫队+分块 ||BZOJ 3585: mex || Luogu P4137 Rmq Problem / mex
题面:Rmq Problem / mex 题解: 先离散化,然后插一堆空白,大体就是如果(对于以a.data<b.data排序后的A)A[i-1].data+1!=A[i].data,则插一个空 ...
- Mayor's posters (线段树+离散化)
Mayor's posters Description The citizens of Bytetown, AB, could not stand that the candidates in the ...
- POJ 2528 Mayor's posters(线段树+离散化)
Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...
- [poj2528] Mayor's posters (线段树+离散化)
线段树 + 离散化 Description The citizens of Bytetown, AB, could not stand that the candidates in the mayor ...
- [UESTC1059]秋实大哥与小朋友(线段树, 离散化)
题目链接:http://acm.uestc.edu.cn/#/problem/show/1059 普通线段树+离散化,关键是……离散化后建树和查询都要按照基本法!!!RE了不知道多少次………………我真 ...
随机推荐
- 一句话木马的简单例子 网站webshell & 远程连接
一 概述 本地 kail linux 目标 windows nt 服务器 二 过程 首先编写一句话木马 index.php 一句话木马的原理就是把C=xxx 字符串当成php语句执行 注意这里用 ...
- HDU 3247 Resource Archiver(AC自动机 + 状压DP + bfs预处理)题解
题意:目标串n( <= 10)个,病毒串m( < 1000)个,问包含所有目标串无病毒串的最小长度 思路:貌似是个简单的状压DP + AC自动机,但是发现dp[1 << n][ ...
- 翻译:《实用的Python编程》01_03_Numbers
目录 | 上一节 (1.2 第一个程序) | 下一节 (1.4 字符串) 1.3 数字 本节讨论数学计算. 数字类型 Python 有 4 种类型的数字: 布尔型 整型 浮点型 复数(虚数) 布尔型( ...
- Windows 常用键盘快捷键:
键盘快捷键 通过使用键盘快捷键可以节省时间. Windows 和 Mac 的键盘快捷键 在现代操作系统中和计算机软件程序中,键盘快捷键经常被使用. 使用键盘快捷键能帮您节省很多时间. 基本的快捷键 描 ...
- Android 如何使用 WebView 加载 HTML 字符串和处理转译字符
Android 如何使用 WebView 加载 HTML 字符串和处理转译字符 css bug 在 WebView 中编译 Web 应用 如果您希望在客户端应用中提供 Web 应用(或只是网页),则可 ...
- empty Checker
empty Checker "use strict"; /** * * @author xgqfrms * @license MIT * @copyright xgqfrms * ...
- no code form generator
no code form generator 无代码,表单生成器 H5 Drag & Drop UI => codes click copy demo https://www.forms ...
- websockets & auto close & bug & solution
websockets & auto close & bug & solution WS 连接总是被关闭 ??? refs https://wdd.js.org/websocke ...
- C++算法代码——阿克曼函数
题目来自: 题目描述 阿克曼( Ackmann) 函数 A(x, y) 中, x, y 定义域是非负整数, 函数值定义为: 输入 输入两个数,表示m和n. 两个数均不超过10. 输出 输出一个数,表示 ...
- java安全管理器SecurityManager
本文转载自java安全管理器SecurityManager 导语 这是一篇对Java安全管理器入门的文章,目的是简单了解什么是SecurityManager,对管理器进行简单配置,解决简单问题. 比如 ...