因为最近在找实习,所以打算把自己之前学过的关数据分析的知识总结(复习)一下。在总结A/B test时,我发现中文互联网中关于A/B test的总结已经很多了,但是对于均值型指标和比值(率)型指标在设计实验、计算统计量时的区别却没有一个很明确的总结。甚至有的文章给出的计算公式语焉不详、前后矛盾,计算样本数量给的是均值型指标的计算公式,计算Z值时又给出了比值(率)型指标的计算公式。

均值型指标和比值(率)型指标

在互联网数据分析中,有许多指标是数据分析师所关心的,对于不同的数据分析任务需要选取合适的指标。对A/B test而言,这些指标可以分为两类

  • 比值(率)型,如点击率、转化率等
  • 均值型,如人观看时长等

需要注意的是,在统计学中,这两类指标的假设检验是不同的。这种不同主要体现在三个方面:效应量(Effect size)的计算、所需样本量的计算以及Z检验统计量的计算。

所需样本量

在给出计算样本量之前,首先介绍一下样本量的四个影响因素,分别是:

  • 显著性水平(α):显著性水平越低,对实验结果的要求也就越高,越需要更大的样本量来确保精度
  • 统计功效(1 – β):统计功效意味着避免犯二类错误的概率,这个值越大,需要的样本量也越大
  • 均值差异(\(\mu_1, \mu_2\)):如果两个版本的均值差别巨大,也不太需要多少样本,就能达到统计显著
  • 标准差(σ):标准差越小,代表两组差异的趋势越稳定。越容易观测到显著的统计结果

一个A/B test需要的样本量就由四个指标进行计算:

  • 比值(率)型指标

    \[N = \frac{(z_{1-\alpha/2}\sqrt{2\frac{p_1 +p_2}{2}(1-\frac{p_1 +p_2}{2})} +z_{1-\beta}\sqrt{p_1(1-p_1)+ p_2(1-p_2)} )^2}{(p_1-p_2)^2}
    \]

    其中\(p_1,p_2\)分别表示两组样本的比值型指标。上述方法为R和G*power中使用公式,其他工具略有不同,更多比值类样本量计算方法,参考[2]。

  • 均值型指标

\[N_1 = kN_2
\]
\[N_2 = (1+ \frac{1}{k})(\sigma\frac{z_{1-\alpha/2}+ z_{1-\beta}}{\mu_1 - \mu_2})^2
\]

​ 其中\(N_1,N_2\) 分别表示两组样本数量;\(z_{1-\alpha/2},z_{1-\beta}\) 通过\(z\)分布计算;\(\mu_1,\mu_2\) 分别为当前均值指标和预估改进后均值指标(或者期望检测到的指标变化)。重点是标准差\(\sigma\) ,实验前很难知道其大小,一般可以根据经验值预估。

效应量(Effect size)

效应量又称效应值,提供了对效应大小的具体测量,也就是说反映了具体效果的大小。

  • 比值(率)型指标
\[es = 2(arcsin(\sqrt{p_1})- arcsin(\sqrt{p_2}))
\]

  • 均值型指标
    \[es = \frac{\mu_1 - \mu_2}{\sigma_{pooled}} = \frac{\mu_1 - \mu_2}{\sqrt{\frac{(n_1-1)s_1^2+(n_2-1)s_2^2}{n_1+n_2-2}}}
    \]

    其中\(s_1, s_2\) 分别表示两组样本的标准差.

Z检验统计量

  • 比值(率)型指标

    • 商务与经济统计[1]中给出的方法

      \[z = \frac{\overline{p}_1 - \overline{p}_2}{\sqrt{\overline{p}(1-\overline{p})(\frac{1}{n_1}+\frac{1}{n_2})}}
      \]
      \[\overline{p} = \frac{n_1\overline{p}_1 + n_1\overline{p}_1}{n_1 + n_2}
      \]
    • 网络中给出的方法:

      \[z = \frac{(p_1 - p_2) - (\mu_1-\mu_2)}{\sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}}
      \]

      找了好久没有找到推导,个人看法是把比值型指标看做伯努利分布,则根据中心极限定理,\(B(1,p)\sim N(p,p(1-p))\),然后从均值型指标公式推导过来。

  • 均值型指标

    \[z = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1-\mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}
    \]

以上就是我总结的关于均值型指标和比值(率)型指标在A/B test中的区别,如有遗漏和错误,望大家多多指正。

参考文献

[1]. 商务与经济统计

[2]. A/B测试系列文章之怎么计算实验所需样本量

[3]. A/B测试(A/B试验)的概述、原理、公式推导、Python实现和应用

All I know about A/B Test (1) : 均值型指标与比值(率)型指标的计算区别的更多相关文章

  1. In-Memory:内存数据库

    在逝去的2016后半年,由于项目需要支持数据的快速更新和多用户的高并发负载,我试水SQL Server 2016的In-Memory OLTP,创建内存数据库实现项目的负载需求,现在项目接近尾声,系统 ...

  2. 关于DOM的操作以及性能优化问题-重绘重排

     写在前面: 大家都知道DOM的操作很昂贵. 然后贵在什么地方呢? 一.访问DOM元素 二.修改DOM引起的重绘重排 一.访问DOM 像书上的比喻:把DOM和JavaScript(这里指ECMScri ...

  3. H5实现摇一摇技术总结

    摇一摇遇到的问题 一.如何对摇晃效果进行反馈 刚开始的处理方式是,摇晃过程中不做任何处理,但后来反馈说这种效果不好,好像就没有摇动一样,如果声音也不响的话,就真的和什么都没发生一样. 后来想了想,加入 ...

  4. 【AR实验室】mulberryAR : ORBSLAM2+VVSION

    本文转载请注明出处 —— polobymulberry-博客园 0x00 - 前言 mulberryAR是我业余时间弄的一个AR引擎,目前主要支持单目视觉SLAM+3D渲染,并且支持iOS端,但是该引 ...

  5. Python中的多进程与多线程(一)

    一.背景 最近在Azkaban的测试工作中,需要在测试环境下模拟线上的调度场景进行稳定性测试.故而重操python旧业,通过python编写脚本来构造类似线上的调度场景.在脚本编写过程中,碰到这样一个 ...

  6. Unity3d学习 相机的跟随

    最近在写关于相机跟随的逻辑,其实最早接触相机跟随是在Unity官网的一个叫Roll-a-ball tutorial上,其中简单的涉及了关于相机如何跟随物体的移动而移动,如下代码: using Unit ...

  7. Tomcat一个BUG造成CLOSE_WAIT

    之前应该提过,我们线上架构整体重新架设了,应用层面使用的是Spring Boot,前段日子因为一些第三方的原因,略有些匆忙的提前开始线上的内测了.然后运维发现了个问题,服务器的HTTPS端口有大量的C ...

  8. 你必须知道的EF知识和经验

    注意:以下内容如果没有特别申明,默认使用的EF6.0版本,code first模式. 推荐MiniProfiler插件 工欲善其事,必先利其器. 我们使用EF和在很大程度提高了开发速度,不过随之带来的 ...

  9. Python 小而美的函数

    python提供了一些有趣且实用的函数,如any all zip,这些函数能够大幅简化我们得代码,可以更优雅的处理可迭代的对象,同时使用的时候也得注意一些情况   any any(iterable) ...

  10. C语言 · 高精度加法

    问题描述 输入两个整数a和b,输出这两个整数的和.a和b都不超过100位. 算法描述 由于a和b都比较大,所以不能直接使用语言中的标准数据类型来存储.对于这种问题,一般使用数组来处理. 定义一个数组A ...

随机推荐

  1. POJ1273 最大流模板

    之前自己写的,以后当一个模板的基础吧,不管是最大流,最小割,二分图匹配 下面是POJ1273的一个裸题.. 1 #include <iostream> 2 #include <cst ...

  2. React Hooks: useDebugValue All In One

    React Hooks: useDebugValue All In One useDebugValue https://reactjs.org/docs/hooks-reference.html#us ...

  3. macOS & uninstall app

    macOS & uninstall app https://support.apple.com/en-hk/guide/mac-help/install-and-uninstall-other ...

  4. 扫码登录 & 实现原理

    扫码登录 & 实现原理 二维码扫描登录是什么原理? https://time.geekbang.org/dailylesson/detail/100044032 xgqfrms 2012-20 ...

  5. SVG 2 & SVG & getPointAtLength & getPathSegAtLength

    SVG 2 & SVG & getPointAtLength & getPathSegAtLength getPointAtLength SVG 1.x https://dev ...

  6. Datahero Inc利用区块链溯源,造福各行各业

    近些年来,随着区块链技术的不断崛起以及快速发展,越多越多的人提出将区块链技术引入到溯源系统当中,溯源也成为了区块链技术的重要应用场景之一. 目前,Datahero inc已建设一整套的溯源平台系统,基 ...

  7. Baccarat凭什么吸引做市商?2021年将如何发展?

    在过去的一年里,基于资金池的AMM自动化做市商几乎统治了所有DeFi活动,他们没有订单簿,而是根据算法曲线提供资产.尽管在流动性和交易方面取得了令人惊叹的成绩,但是其自身具有无常损失.多代币敞口以及低 ...

  8. Docker备份迁移

    目录 Docker备份迁移 1.容器保存为镜像 2.镜像打包成压缩文件 3.把压缩文件恢复成镜像 Docker备份迁移 1.容器保存为镜像 将已经装好各种软件的容器再次打包为镜像,这样下次直接装这个镜 ...

  9. 基于【腾讯云函数】/【GitHub Actions】/【Docker】的每日签到脚本(支持多账号使用)

    每日签到集合 基于[腾讯云函数]/[GitHub Actions]/[Docker]的每日签到脚本 支持多账号使用 特别声明: 本仓库发布的脚本及其中涉及的任何解锁和解密分析脚本,仅用于测试和学习研究 ...

  10. Python 过滤字母和数字

    [前言]在写爬虫时,正则表达式有时候比较难写,一个是自己不熟练,二者数据分析提取数据千奇百怪. 一.好在python有个re模块,提供了很多更加简便的方法:可参考此文档:https://www.cnb ...