Line-line Intersection Gym - 102220C
题目链接:https://vjudge.net/problem/Gym-102220C
题意:求n 条直线两两相交有几对(也可以重合)。
思路:用map和pair存所有直线的斜率和与X轴的交点,假设与前面i条直线都相交,那么要减去与这条直线平行而不重合的直线。
1 #include <bits/stdc++.h>
2 #include <time.h>
3 #include <set>
4 #include <map>
5 #include <stack>
6 #include <cmath>
7 #include <queue>
8 #include <cstdio>
9 #include <string>
10 #include <vector>
11 #include <cstring>
12 #include <utility>
13 #include <cstring>
14 #include <iostream>
15 #include <algorithm>
16 #include <list>
17 using namespace std;
18 //cout<<setprecision(10)<<fixed;
19 #define eps 1e-6
20 #define PI acos(-1.0)
21 #define lowbit(x) ((x)&(-x))
22 #define zero(x) (((x)>0?(x):-(x))<eps)
23 #define mem(s,n) memset(s,n,sizeof s);
24 #define rep(i,a,b) for(int i=a;i<=b;i++)
25 #define rep2(i,a,b) for(int i=a;i>=b;i--)
26 #define ios {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);}
27 typedef long long ll;
28 typedef unsigned long long ull;
29 const int maxn=1e6+5;
30 const ll Inf=0x7f7f7f7f7f7f7f;
31 const ll mod=1e6+3;
32 //const int N=3e3+5;
33 bool isPowerOfTwo(int n) { return n > 0 && (n & (n - 1)) == 0; }//判断一个数是不是 2 的正整数次幂
34 int modPowerOfTwo(int x, int mod) { return x & (mod - 1); }//对 2 的非负整数次幂取模
35 int getBit(int a, int b) { return (a >> b) & 1; }// 获取 a 的第 b 位,最低位编号为 0
36 int Max(int a, int b) { return b & ((a - b) >> 31) | a & (~(a - b) >> 31); }// 如果 a>=b,(a-b)>>31 为 0,否则为 -1
37 int Min(int a, int b) { return a & ((a - b) >> 31) | b & (~(a - b) >> 31); }
38 ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
39 ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
40 inline int read()
41 {
42 int X=0; bool flag=1; char ch=getchar();
43 while(ch<'0'||ch>'9') {if(ch=='-') flag=0; ch=getchar();}
44 while(ch>='0'&&ch<='9') {X=(X<<1)+(X<<3)+ch-'0'; ch=getchar();}
45 if(flag) return X;
46 return ~(X-1);
47 }
48 inline void write(int X)
49 {
50 if(X<0) {X=~(X-1); putchar('-');}
51 if(X>9) write(X/10);
52 putchar(X%10+'0');
53 }
54 /*
55 inline int write(int X)
56 {
57 if(X<0) {putchar('-'); X=~(X-1);}
58 int s[20],top=0;
59 while(X) {s[++top]=X%10; X/=10;}
60 if(!top) s[++top]=0;
61 while(top) putchar(s[top--]+'0');
62 }
63 */
64 int Abs(int n) {
65 return (n ^ (n >> 31)) - (n >> 31);
66 /* n>>31 取得 n 的符号,若 n 为正数,n>>31 等于 0,若 n 为负数,n>>31 等于 -1
67 若 n 为正数 n^0=n, 数不变,若 n 为负数有 n^(-1)
68 需要计算 n 和 -1 的补码,然后进行异或运算,
69 结果 n 变号并且为 n 的绝对值减 1,再减去 -1 就是绝对值 */
70 }
71 ll binpow(ll a, ll b) {
72 ll res = 1;
73 while (b > 0) {
74 if (b & 1) res = res * a%mod;
75 a = a * a%mod;
76 b >>= 1;
77 }
78 return res%mod;
79 }
80 void extend_gcd(ll a,ll b,ll &x,ll &y)
81 {
82 if(b==0) {
83 x=1,y=0;
84 return;
85 }
86 extend_gcd(b,a%b,x,y);
87 ll tmp=x;
88 x=y;
89 y=tmp-(a/b)*y;
90 }
91 ll mod_inverse(ll a,ll m)
92 {
93 ll x,y;
94 extend_gcd(a,m,x,y);
95 return (m+x%m)%m;
96 }
97 ll eulor(ll x)
98 {
99 ll cnt=x;
100 ll ma=sqrt(x);
101 for(int i=2;i<=ma;i++)
102 {
103 if(x%i==0) cnt=cnt/i*(i-1);
104 while(x%i==0) x/=i;
105 }
106 if(x>1) cnt=cnt/x*(x-1);
107 return cnt;
108 }
109 map<pair<ll,ll>,ll>k;//斜率相同的直线;
110 map<pair<pair<ll,ll>,ll>,ll>c;//相同直线;
111 int main()
112 {
113 int n,t;
114 t=read();
115 while(t--)
116 {
117 n=read();
118 ll ans=0;
119 k.clear();
120 c.clear();
121 for(int i=0;i<n;i++)
122 {
123 ll x1,y1,x2,y2,x;
124 scanf("%lld%lld%lld%lld",&x1,&y1,&x2,&y2);
125 x=x1*y2-x2*y1;
126 ll xx=x2-x1;
127 ll yy=y2-y1;
128 ll d=__gcd(xx,yy);
129 xx/=d;
130 yy/=d;
131 x/=d;
132 ans+=i-k[{xx,yy}]+c[{{xx,yy},x}];//减掉与其平行而不重合的直线;
133 k[{xx,yy}]++;
134 c[{{xx,yy},x}]++;
135 }
136 printf("%lld\n",ans);
137 }
138 return 0;
139 }
//假设与前i-1条边都相交,需要减去与他平行而不重合的线段
Line-line Intersection Gym - 102220C的更多相关文章
- C - Line-line Intersection Gym - 102220C(线段相交)
There are n lines l1,l2,…,ln on the 2D-plane. Staring at these lines, Calabash is wondering how many ...
- [CareerCup] 7.6 The Line Passes the Most Number of Points 经过最多点的直线
7.6 Given a two-dimensional graph with points on it, find a line which passes the most number of poi ...
- Poj 2074 Line of Sight
地址:http://poj.org/problem?id=2074 题目: Line of Sight Time Limit: 1000MS Memory Limit: 30000K Total ...
- 简单几何(直线求交点) POJ 2074 Line of Sight
题目传送门 题意:从一条马路(线段)看对面的房子(线段),问连续的能看到房子全部的最长区间 分析:自己的思路WA了:先对障碍物根据坐标排序,然后在相邻的障碍物的间隔找到区间,这样还要判断是否被其他障碍 ...
- [CC150] Find a line passing the most number of points
Problem: Given a two-dimensional graph with points on it, find a line which passes the most number o ...
- 《MATLAB从入门到放弃》二维曲线和图形绘制基础(二):使用Help文档学习line、plot、plotyy、subplot、hold绘图函数
目录: » plot 最常用的二维曲线绘图函数 > 帮助文档 > 基本使用语法 > 线条的样式.符号和颜色调整 > 图形属性调整 > 使用图形句柄进行设置 » ...
- Problem E: 平面上的点和线——Point类、Line类 (V)
Description 在数学上,平面直角坐标系上的点用X轴和Y轴上的两个坐标值唯一确定,两点确定一条线段.现在我们封装一个“Point类”和“Line类”来实现平面上的点的操作. 根据“append ...
- Problem D: 平面上的点和线——Point类、Line类 (IV)
Description 在数学上,平面直角坐标系上的点用X轴和Y轴上的两个坐标值唯一确定,两点确定一条线段.现在我们封装一个“Point类”和“Line类”来实现平面上的点的操作. 根据“append ...
- Problem C: 平面上的点和线——Point类、Line类 (III)
Description 在数学上,平面直角坐标系上的点用X轴和Y轴上的两个坐标值唯一确定,两点确定一条线段.现在我们封装一个“Point类”和“Line类”来实现平面上的点的操作. 根据“append ...
随机推荐
- html+ashx + NPOI 实现导出Excel文件并且预览和下载
先看看实现效果 简单描述一下实现过程: 1. 生成报表,返回报表文件路径 $.post 请求一般处理文件ashx ,通过npoi生成对应的excel文件.生成成功后,返回文件保存的完整路径 2. ...
- 016.NET5_MVC_视图组件扩展定制
视图组件 1. 呈现页面响应的某一部分而不是整个响应 2. 包括在控制器和视图之间发生的关注分类和可测试优势 3.可以具有参数和业务逻辑 4. 通常在页面局部调用 如何自定义视图组件? 1.Razor ...
- 机器学习入门实战——基于knn的airbnb房租预测
数据读取 import pandas as pd features=['accommodates','bathrooms','bedrooms','beds','price','minimum_nig ...
- perl 在windows上获取当前桌面壁纸
更多 #!/usr/bin/perl # 在windows获取当前的桌面壁纸 # See also: https://www.winhelponline.com/blog/find-current-w ...
- 同样是NGK官方推出的代币,SPC与BGV有何异同?
近日,币圈又火热了起来,而这次火热是由NGK搅动的.原来,NGK官方空投了200万枚SPC,用于奖励NGK算力持有者.当前,已经有一部分算力持有者获得了SPC奖励,有的算力持有者获得的SPC数量惊人, ...
- 关于Python 编码的一点认识
在计算机中,所有数据的存储.运算以及传输都必须是二进制数字,因为计算机只认识0和1. 当一个人把一份数据传给另一个人时,计算机传递的是其实是二进制数字,但这些数字需要被还原为原始信息. 这个工作当然是 ...
- Java自学第2期——注释、数据类型、运算符、方法
2.1.注释 注释用于说明某段代码的作用,某个类的用途,某个方法的功能,参数和返回值数据类型的意义等等: 注释非常非常非常重要,回顾代码时通过注释找回思路:团队沟通需要,让别人读懂你的代码,增加效率: ...
- ElasticSearch DSL 查询
公号:码农充电站pro 主页:https://codeshellme.github.io DSL(Domain Specific Language)查询也叫做 Request Body 查询,它比 U ...
- 基于tcp的应用层消息边界如何定义
聊聊基于tcp的应用层消息边界如何定义 背景 2018年笔者有幸接触一个项目要用到长连接实现云端到设备端消息推送,所以借机了解过相关的内容,最终是通过rabbitmq+mqtt实现了相关功能,同时在心 ...
- linux之安装nginx
nginx官网:http://nginx.org/en/download.html 1.安装nginx所需环境 a) PCRE pcre-devel 安装 # yum install -y pcre ...