1. SDS:简单动态字符串(simple dynamic string)

Redis没有直接使用C语言的字符串,而是自己构建了一种名为简单动态字符串类型,并将SDS用作Redis的默认字符串。

SDS的定义

struct sdshdr {

    // buf 中已占用空间的长度
int len; // buf 中剩余可用空间的长度
int free; // 字节数组
char buf[];
};

SDS与C字符串的区别

  1. SDS获取字符串长度复杂度为O(1), C字符串获取字符串长度复杂度为O(N);

    因为C字符串获取字符串并不记录自身长度,程序必须遍历整个字符串对每个字符串计数。这个操作的复杂度为O(N)

    SDS在len属性中记录了SDS本身长度,所以获取字符串长度复杂度为O(1)
  2. API是安全的,不会造成缓冲区溢出;

    C字符串不记录自身长度,如果忘了给字符串扩容执行字符串拼接就会造成溢出

    SDS拼接字符串之前会先通过free字段检测剩余空间能否满足需求,不能满足需求的就会扩容。
  3. 减少修改字符串带来的内存重分配次数;

    C字符串底层总是一个N+1个字符数组,所以每次增长或缩短一个字符串,程序总要对这个C字符串进行一次内存重分配。

    SDS实现空间预分配和惰性空间释放两种优化策略.
  4. 二进制安全

    C字符串只能保存文本数据

    SDS可以保存文本或者二进制数据

** 2. 链表 **

Redis的List(列表)和发布订阅,慢查询,监视器等功能都用到了链表

链表节点实现 adlist.h/listNode结构表示

    // listNode 双端链表节点
typedef struct listNode { // 前置节点
struct listNode *prev; // 后置节点
struct listNode *next; // 节点的值
void *value; } listNode;

该链表为双向链表,由多个listNode结点组成的链表结构图如下:

链表实现 adlist.h/list结构表示

// list 双端链表
typedef struct list { // 在c语言中,用结构体的方式来模拟对象是一种常见的手法 // 表头节点
listNode *head; // 表尾节点
listNode *tail; // 节点值复制函数
void *(*dup)(void *ptr); // 节点值释放函数
void(*free)(void *ptr); // 节点值对比函数
int(*match)(void *ptr, void *key); // 链表所包含的节点数量
unsigned long len; } list;
例:由一个list结构和三个listNode结构组成的链表
![](https://img2020.cnblogs.com/blog/1186190/202102/1186190-20210227163531303-2083424534.jpg) 链表提供表头指针head,表尾指针tail,以及链表长度计数器len,和封装了3个内置函数
1.dup函数:复制链表结点所保存的值
2.free函数:释放链表结点所保存的值
3.match函数:对比链表结点所保存的值和另一个输入值是否相等
这三个函数是用于实现多态链表所需的类型特定函数。

Redis链表实现特征总结

1.双端:获取某个结点的前驱和后继结点都是O(1)

2.无环:表头的prev指针和表尾的next指针都指向NULL,对链表的访问都是以NULL为终点

3.带表头指针和表尾指针:获取表头和表尾的复杂度都是O(1)

4.带链表长度计数器:len属性记录,获取链表长度O(1)

5.多态:链表结点使用void*指针来保存结点的值,并且可以通过链表结构的三个函数为结点值设置类型特定函数,所以链表可以保存各种不同类型的值

  1. 字典

    1. 字典的实现

    哈希节点使用dictEntry结构表示,每个dictEntry结构都保存着一个键值对。

    // dictEntry 哈希表节点
typedef struct dictEntry {
// 键
void *key; // 值
union {//值v的类型可以是以下三种类型
void *val;
uint64_t u64;
int64_t s64;
} v; // 指向下个哈希表节点,形成链表
struct dictEntry *next; } dictEntry;
Redis字典使用哈希表有dictht.h/dictht结构定义

typedef struct dictht {
// 哈希表数组, 每个元素都是一条链表
dictEntry **table; // 哈希表大小
unsigned long size; // 哈希表大小掩码,用于计算索引值
// 总是等于 size - 1
unsigned long sizemask; // 该哈希表已有节点的数量
unsigned long used; } dictht;
![](https://img2020.cnblogs.com/blog/1186190/202102/1186190-20210227171229827-765330912.png)
    // dict 字典
typedef struct dict { // 类型特定函数
dictType *type; // type里面主要记录了一系列的函数,可以说是规定了一系列的接口 // 私有数据
void *privdata; // privdata保存了需要传递给那些类型特定函数的可选参数 //两张哈希表
dictht ht[2];//便于渐进式rehash //rehash 索引,并没有rehash时,值为 -1
int rehashidx; //目前正在运行的安全迭代器的数量
int iterators; } dict;
* type 属性是一个指向dictType结构的指针,每个dictType结构保存了一族用于操作特定类型键值对的函数,Redis为用途不同的字典设置不同的类型特定函数。
* privdata 属性则保存了需要传递给那些类型特定函数的可选参数。
* ht是一个包含两个项的数组,数组每个项都是一个dictht哈希表,一般情况下只使用ht[0]哈希表,ht[1]只会对ht[0]哈希表进行rehash时使用。
* rehashidx它记录了rehash目前的进度,如果目前没有进行rehash,那么他的值为-1.
    // dictType 用于操作字典类型函数
typedef struct dictType { // 计算哈希值的函数
unsigned int(*hashFunction)(const void *key); // 复制键的函数
void *(*keyDup)(void *privdata, const void *key); // 复制值的函数
void *(*valDup)(void *privdata, const void *obj); // 对比键的函数
int(*keyCompare)(void *privdata, const void *key1, const void *key2); // 销毁键的函数
void(*keyDestructor)(void *privdata, void *key); // 销毁值的函数
void(*valDestructor)(void *privdata, void *obj); } dictType;
![](https://img2020.cnblogs.com/blog/1186190/202102/1186190-20210227171242872-913327145.png)
  1. 哈希算法

    使用字典类型设置的哈希函数击视键key的哈希值

    int hash = dict->type->hashFunction(key)

    使用哈希表的sizemask的属性和哈希值计算出索引值

    index = hash & dict->ht[0].sizemask;

    使用哈希表节点next指针构成单向链表解决哈希冲突。

  2. 扩展和收缩哈希表的恭祝通过执行rehash操作来完成步骤如下

    如果执行的是扩展操作,那么扩展ht[1]的大小为第一个大于等于ht[0].used*2的2的n此幂

    如果执行的是收缩操作,那么收缩ht[1]的大小为第一个大于等于ht[0].used的2的n此幂

    将保存在ht[0]中的所有键值对rehash到ht[1]上面:rehash指的是重新计算键的哈希值和索引值,然后将键值对放置到ht[1]哈希表的指点位置。

    当ht[0]包含的所有键值对都迁移到ht[1]之后,释放ht[0],将ht[1]设置为ht[0],并在ht[1]重新创建一个空哈希表,为下一次rehash做准备。

    当以下条件中的任意一个被满足时,程序会自动开始对哈希表进行扩展操作

    1)服务器目前没有执行BGSAVE命令或者BGREWRITEOF命令,并且哈希表的负载因子大于等于1.

    2)服务器目前正在执行BGSAVE命令或者BGREWRITEOF命令,并且哈希表的负载因子大于等于5.

    3) 哈希表的负载因子可以通过公式:load_factor = ht[0].used / ht[0].size;

    4) 哈希表的负载因子小于0.1时,自动执行哈希表收缩操作;

  3. 如果哈希表中有成千上万个键值对,那么要一次性rehash到ht[1]的话,可能会导致服务器一段时间内停止服务。为了避免rehash对服务器性能影响,服务器二十分多次,渐进性的将ht[0]里面的键值对渐进性的rehash。详细步骤:

    1)为ht[1]分配空间,让字典同时持有ht[0]和ht[1]两个哈希表。

    2)在字典中维持一个索引计数器变量rehashidx,并将它的值设置为0,表示rehash工作正式开始。

    3) 在rehash进行期间,每次对字典执行添加,删除,查找或者更新操作时,程序除了执行指定的操作外,还会顺带将ht[0]哈希表在rehashidx索引上的所有键值对rehash到ht[1],完成顺带操作后,程序将rehashidx属性的值加一.

    4) 随着字典操作的不断执行,最终在某个时间点,ht[0]的所有键值对会被rehash至ht[1]。这是将rehashidx设置为-1.表示rehash操作已执行完。

redis数据结构和对象一的更多相关文章

  1. Redis数据结构和对象三

    1.Redis 对象系统 Redis用到的所有主要数据结构,简单动态字符串(SDS).双端链表.字典.压缩列表.整数集合.跳跃表. Redis并没有直接使用这些数据结构来实现键值对数据库,而是基于这些 ...

  2. redis数据结构和对象二

    跳跃表(skiplist) 跳跃表是一种有序数据结构.跳跃表支持平均O(logN),最坏O(N)复杂度的节点查找,大部分情况下,跳跃表的效率可以和平衡树相媲美,并且因为跳跃表的实现比平衡树简单,所有不 ...

  3. Redis学习笔记一:数据结构与对象

    1. String(SDS) Redis使用自定义的一种字符串结构SDS来作为字符串的表示. 127.0.0.1:6379> set name liushijie OK 在如上操作中,name( ...

  4. Redis 基础数据结构与对象

    Redis用到的底层数据结构有:简单动态字符串.双端链表.字典.压缩列表.整数集合.跳跃表等,Redis并没有直接使用这些数据结构来实现键值对数据库,而是基于这些数据结构创建了一个对象系统,这个系统包 ...

  5. redis 系列9 对象类型(字符串,哈希,列表,集合,有序集合)与数据结构关系

    一.概述 在前面章节中,主要了解了 Redis用到的主要数据结构,包括:简单动态字符串.链表(双端链表).字典.跳跃表. 整数集合.压缩列表(后面再了解).Redis没有直接使用这些数据结构来实现键值 ...

  6. Redis 的底层数据结构(对象)

    目前为止,我们介绍了 redis 中非常典型的五种数据结构,从 SDS 到 压缩列表,这都是 redis 最底层.最常用的数据结构,相信你也掌握的不错. 但 redis 实际存储键值对的时候,是基于对 ...

  7. [redis读书笔记] 第一部分 数据结构与对象 对象类型

    - 从前面redis的基本数据结构来看,可以看出,redis都是在基本结构(string)的基础上,封装了一层统计的结构(SDS),这样让对基本结构的访问能够更快更准确,提高可控制度. - redis ...

  8. Redis | 第一部分:数据结构与对象 上篇《Redis设计与实现》

    目录 前言 1. 简单动态字符串 1.1 SDS的定义 1.2 空间预分配与惰性空间释放 1.3 SDS的API 2. 链表 2.1 链表与节点的定义 2.2 链表的API 3. 字典 3.1 哈希表 ...

  9. Redis | 第一部分:数据结构与对象 下篇《Redis设计与实现》

    目录 前言 1. Redis对象概述 1.1 对象的定义 2. 字符串对象 3. 列表对象 3.1 quicklist 快速链表 4. 哈希对象 5. 集合对象 6. 有序集合对象 7. Redis对 ...

随机推荐

  1. HDU-6874 Decision 倍增 (2020 HDU多校 D7 D)

    Decision 题意 从 \([0,t]\) 中等概率的选取两个数字 \(v_1,v_2\), 定义序列 \(X\) 有 \(X_0=v1+v2,X_{n+1}=(aX_n+c) \mod m\). ...

  2. 【uva 11082】Matrix Decompressing(图论--网络流最大流 Dinic+拆点二分图匹配)

    题意:有一个N行M列的正整数矩阵,输入N个前1~N行所有元素之和,以及M个前1~M列所有元素之和.要求找一个满足这些条件,并且矩阵中的元素都是1~20之间的正整数的矩阵.输入保证有解,而且1≤N,M≤ ...

  3. UVA1401 Remember the Word 字典树维护dp

    题目链接:https://vjudge.net/problem/UVA-1401 题目: Neal is very curious about combinatorial problems, and ...

  4. Codeforces Round #577 (Div. 2) C. Maximum Median (模拟,中位数)

    题意:给你一个长度为奇数\(n\)的序列.你可以对任意元素加上\(k\)次\(1\),求操作后的中位数最大. 题解:先对序列进行排序,然后对中位数相加,如果中位数和后面的元素相等,就对后面所有和当前中 ...

  5. 基于CentOS-7的redis下载和安装

    1.下载和安装 在我安装的虚拟机中,我把所有自己安装的软件都放在了/ph/install 目录下,具体以自己实际情况为准. [root@localhost ~]$ cd /ph/install #进入 ...

  6. 或许你知道Python的shell,那jshell呢?

    Java 10以后,java官方推出了类似python的shell操作的jshell,你的指令可以及时反馈,对于新手学习而言非常有用.如果你和我一样刚学Java,建议你使用高版本,和我一起开始使用js ...

  7. OpenStack Train版-13.安装块存储服务cinder(控制节点)

    Cinder的核心功能是对卷的管理,允许对卷.卷的类型.卷的快照.卷备份进行处理.它为后端不同的存储设备提供给了统一的接口,不同的块设备服务厂商在Cinder中实现其驱动,可以被Openstack整合 ...

  8. HCTF Warmup (phpmyadmin4.8.1的文件包含漏洞 )

    Warmup 先看hint   image.png 看url有file参数,感觉可能要用伪协议啥的,试了下,没出东西扫一下目录,发现http://warmup.2018.hctf.io/source. ...

  9. ASP.NET Core 中间件(Middleware)(一)

    本文主要目标:记录Middleware的运行原理流程,并绘制流程图. 目录结构: 1.运行环境 2.Demo实践 3.源码追踪 4.AspnetCore内置middleware 一.运行环境 Visu ...

  10. 深入理解gradle中的task

    目录 简介 定义task tasks 集合类 Task 之间的依赖 定义task之间的顺序 给task一些描述 task的条件执行 task rule Finalizer tasks 总结 深入理解g ...