python多线程之Threading
什么是线程?
线程是操作系统内核调度的基本单位,一个进程中包含一个或多个线程,同一个进程内的多个线程资源共享,线程相比进程是“轻”量级的任务,内核进行调度时效率更高。
多线程有什么优势?
多线程可以实现多任务并发执行,简化代码的编写难度,每一个独立的模块都可以设计成一个独立的线程运行
线程间通信比进程间通信难度更小,效率更高,因为资源共享
线程的调度比进程的调度效率高
Python 语言内置了多线程功能支持,而不是单纯地作为底层操作系统的调度方式,从而简化了 Python 的多线程编程
Threading库
多线程的启动方式(函数式和类对象式)
import threading
import time def runOne(info):
while True:
print(info)
time.sleep(1)
pass def runTwo(info):
while True:
print(info)
time.sleep(1)
pass if __name__ == '__main__':
t1 = threading.Thread(target = runOne, args = ("task one run",))
t2 = threading.Thread(target = runTwo, args = ("task two run",))
t1.start() # 启动t1
t2.start() # 启动t2
t1.join() # 主线程等待t1子线程结束(阻塞)
t2.join() # 主线程等待t2子线程结束(阻塞)
import threading
import time class MyThread(threading.Thread):
def __init__(self, info):
super(MyThread, self).__init__()
self.info = info def run(self):
while True:
print(self.info)
time.sleep(1)
pass if __name__ == "__main__":
t1 = MyThread("taskone")
t2 = MyThread("tasktwo")
t1.start() # 启动t1
t2.start() # 启动t2
t1.join() # 主线程等待t1子线程结束(阻塞)
t2.join() # 主线程等待t2子线程结束(阻塞)
守护线程
如果将任务1设置为任务2的守护线程,当任务2结束时,任务1也自动结束。上述例子中如果将子线程设置主线程的守护线程,那么当主线程结束时,子线程也自动结束。
import threading
import time class MyThread(threading.Thread):
def __init__(self, info):
super(MyThread, self).__init__()
self.info = info def run(self):
print(self.info)
time.sleep(1)
print(self.info)
time.sleep(1)
pass if __name__ == "__main__":
t1 = MyThread("taskone")
t1.setDaemon(True) # t1设置为主线程的守护线程
t1.start() # 启动t1
主线程等待子线程结束
为了实现子线程结束后,主线程再结束的目的,可以使用join方法,让主线程等待子线程执行。
import threading
import time class MyThread(threading.Thread):
def __init__(self, info):
super(MyThread, self).__init__()
self.info = info def run(self):
print(self.info)
time.sleep(1)
print(self.info)
time.sleep(1)
print("Sub tash end")
pass if __name__ == "__main__":
t1 = MyThread("taskone")
t1.start() # 启动t1
t1.join() # 主线程等待子线程结束
print("main task end")
多线程之间的通信
互斥锁
由于同一个进程下多个任务可以共享数据,因此都可以访问同一个全局变量,速度很快,但是也有问题。因为线程的调度是内核实现,线程自己不知道自己什么时候被切换,有可能是访问全局变量操作了一半(访问全局变量,看着是一句话,实际上是多条操作)然后被切换了,当下次得到调度时,此时全局变量有可能已经被其他线程修改了,导致再次访问时获取的数据不对,从而引发异常。解决的办法是在访问全局变量的时候,将全局变量锁住,让其它线程访问不了。互斥锁就是用来实现这个功能,加了互斥锁的地方,同一时间永远只有一个线程可以访问这个全局变量,直到该线程访问完毕后,其他任务才能访问。
import threading
import time num = 0
mutex = threading.Lock() class MyThread(threading.Thread):
def run(self):
global num
time.sleep(1) if mutex.acquire():
num = num + 1
msg = self.name + ' set num to ' + str(num)
print(msg)
mutex.release() def test():
for i in range(5):
t = MyThread()
t.start()
如果加了互斥锁,打印就是1 2 3 4 5;如果没加锁,打印就是乱序的。
消息队列
消息队列是一个线程将消息发送给另一个线程的方式,可以把消息列表理解成一个管道,一个线程在管道的一端放东西,一个线程在管道的另一端取东西,东西在管道内一个接一个的流动。通过发消息的方式就可以避免集中访问全局变量的问题,安全性更高。
import threading
import time
import queue q = queue.Queue() def runOne():
while True:
msg = q.get()
print(msg)
pass def runTwo():
while True:
q.put("message")
time.sleep(1)
pass if __name__ == '__main__':
t1 = threading.Thread(target = runOne)
t2 = threading.Thread(target = runTwo)
t1.start() # 启动t1
t2.start() # 启动t2
t1.join() # 主线程等待t1子线程结束(阻塞)
t2.join() # 主线程等待t2子线程结束(阻塞)
线程怎么结束?
由于threading模块没有提供停止线程的方法,也就是说线程start之后,就处于失控的状态,只能被动的等待它自己结束,这显然是问题。对于线程的结束,本文提供两种方法:第一种发下消息,让线程自己主动退出;第二种调动自定义接口直接结束线程。
import threading
import time
import queue q = queue.Queue() def runOne():
while True:
msg = q.get() if msg == 'exit':
break print(">> %s" % msg)
print("task one stop") def runTwo():
while True:
info = input()
q.put(info) if info == 'exit':
break
print("task two stop") if __name__ == '__main__':
t1 = threading.Thread(target = runOne)
t2 = threading.Thread(target = runTwo)
t1.start() # 启动t1
t2.start() # 启动t2
t1.join() # 主线程等待t1子线程结束(阻塞)
t2.join() # 主线程等待t2子线程结束(阻塞)
import inspect
import ctypes
import threading
import time def _async_raise(tid, exctype):
tid = ctypes.c_long(tid)
if not inspect.isclass(exctype):
exctype = type(exctype)
res = ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, ctypes.py_object(exctype))
if res == 0:
raise ValueError("invalid thread id")
elif res != 1:
ctypes.pythonapi.PyThreadState_SetAsyncExc(tid, None)
raise SystemError("PyThreadState_SetAsyncExc failed") # 结束线程的函数
def stop_thread(thread):
_async_raise(thread.ident, SystemExit) def runOne(info):
while True:
print(info)
time.sleep(1)
pass def runTwo(info):
while True:
print(info)
time.sleep(1)
pass if __name__ == '__main__':
t1 = threading.Thread(target = runOne, args = ("task one run",))
t2 = threading.Thread(target = runTwo, args = ("task two run",))
t1.start()
t2.start() time.sleep(5)
stop_thread(t1) # 停止t1任务 print('------------------------') time.sleep(5)
stop_thread(t2) # 停止t1任务 t1.join()
t2.join()
GIL(Global Interpreter Lock)全局解释器锁
在非python环境中,单核情况下同时只能有一个任务执行;多核情况下可以支持多个线程同时执行。但是在python中,无论有多少核,同时只能执行一个线程。究其原因,是由于GIL的存在导致的。GIL的全称是Global Interpreter Lock(全局解释器锁),来源是python设计之初的考虑,为了数据安全而设计。某个线程想要执行,必须先拿到GIL,我们可以把GIL看作是“通行证”,并且在一个python进程中,GIL只有一个。拿不到通行证的线程,就不允许进入CPU执行。GIL只在cpython中才有,因为cpython调用的是c语言的原生线程,所以他不能直接操作cpu,只能利用GIL保证同一时间只能有一个线程拿到数据。使用建议:针对多核CPU场景,多进程的执行效率优于多线程,优先使用多进程。
python多线程之Threading的更多相关文章
- “死锁” 与 python多线程之threading模块下的锁机制
一:死锁 在死锁之前需要先了解的概念是“可抢占资源”与“不可抢占资源”[此处的资源可以是硬件设备也可以是一组信息],因为死锁是与不可抢占资源有关的. 可抢占资源:可以从拥有他的进程中抢占而不会发生副作 ...
- python多线程之threading模块
threading模块中的对象 其中除了Thread对象以外,还有许多跟同步相关的对象 threading模块支持守护线程的机制 Thread对象 直接调用法 import threading imp ...
- python多线程之threading、ThreadPoolExecutor.map
背景: 某个应用场景需要从数据库中取出几十万的数据时,需要对每个数据进行相应的操作.逐个数据处理过慢,于是考虑对数据进行分段线程处理: 方法一:使用threading模块 代码: # -*- codi ...
- python 线程之 threading(四)
python 线程之 threading(三) http://www.cnblogs.com/someoneHan/p/6213100.html中对Event做了简单的介绍. 但是如果线程打算一遍一遍 ...
- python 线程之 threading(三)
python 线程之 threading(一)http://www.cnblogs.com/someoneHan/p/6204640.html python 线程之 threading(二)http: ...
- python并发编程之threading线程(一)
进程是系统进行资源分配最小单元,线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.进程在执行过程中拥有独立的内存单元,而多个线程共享内存等资源. 系列文章 py ...
- python多线程之Condition(条件变量)
#!/usr/bin/env python # -*- coding: utf-8 -*- from threading import Thread, Condition import time it ...
- python多线程之semaphore(信号量)
#!/usr/bin/env python # -*- coding: utf-8 -*- import threading import time import random semaphore = ...
- python 线程之threading(五)
在学习了Event和Condition两个线程同步工具之后还有一个我认为比较鸡肋的工具 semaphores 1. 使用semaphores的使用效果和Condition的notify方法的效果基本相 ...
随机推荐
- .Net Core Configuration源码探究
前言 上篇文章我们演示了为Configuration添加Etcd数据源,并且了解到为Configuration扩展自定义数据源还是非常简单的,核心就是把数据源的数据按照一定的规则读取到指定的字 ...
- Code Walkthroughs DataStream API
上级:https://www.cnblogs.com/hackerxiaoyon/p/12747387.html DataStream API DataStreamApi 提供了健壮,有状态的流应用, ...
- Python实用笔记 (15)函数式编程——装饰器
什么函数可以被称为闭包函数呢?主要是满足两点:函数内部定义的函数:引用了外部变量但非全局变量. python装饰器本质上就是一个函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外的功能,装饰 ...
- onunload对应的js代码为什么不能执行?和onbeforeunload的区别?
为什么onunload对应的js代码不能执行? 为什么onbeforeunload才可以在离开页面时执行相应的js代码? 1.onunload和onbeforeunload都是在离开页面或者刷新页面的 ...
- could not resolve property(无法解析属性)
could not resolve property(无法解析属性) 顾名思义在写hql语句的时候,属性写错了! 请检查大小写,是实体类的,不是数据库表的! 一个一个检查,仔细看!
- 如何判断一个String字符串不为空或这不为空字符串
如何判断一个String字符串不为空或这不为空字符串 转载兵哥LOVE坤 最后发布于2018-07-27 00:00:05 阅读数 5144 收藏 展开 1.校验不为空: String str ...
- Oracle Solaris 10图文安装
文章目录 1. 虚拟机软件 2. solaris 10镜像 3. 安装OS 4. 允许远程使用root用户登录SSH 5. bash配置 5.1. 修改bash 5.2. 修改提示符 6. CRT连接 ...
- Emergency Evacuation,题解
题目: 题意: 在某一秒,每个人可以进行一个移动:去旁边座位,去过道,在过道向出口走,求最少多少秒可以让所有人离开(具体如图和样例). 分析: 首先,我们先考虑简单的,只考虑出口前有什么事件发生:1. ...
- django框架效率
1. django ORM模式提供食物处理类:transaction.Django默认的事务处理方式时改动就提交,每执行一次就立即提交,这就会花费大量的时间用于IO.Django也支持所有工作都完成后 ...
- WPF 2D纹理的准确映射
TextureCoordinates定义了如何将一副2D纹理映射到所建立的3D网格上,TextureCoordinates为Positions集合中的每一个3D顶点提供了一个2D顶点. 映射时方向确定 ...