问从1号点到各个点的距离+各个点到1号点之间的距离和的最小值
In the age of television, not many people attend theater performances. Antique Comedians of Malidinesia are aware of this fact. They want to propagate theater and, most of all, Antique Comedies. They have printed invitation cards with all the necessary information and with the programme. A lot of students were hired to distribute these invitations among the people. Each student volunteer has assigned exactly one bus stop and he or she stays there the whole day and gives invitation to people travelling by bus. A special course was taken where students learned how to influence people and what is the difference between influencing and robbery. 

The transport system is very special: all lines are unidirectional and connect exactly two stops. Buses leave the originating stop with passangers each half an hour. After reaching the destination stop they return empty to the originating stop, where they wait until the next full half an hour, e.g. X:00 or X:30, where 'X' denotes the hour. The fee for transport between two stops is given by special tables and is payable on the spot. The lines are planned in such a way, that each round trip (i.e. a journey starting and finishing at the same stop) passes through a Central Checkpoint Stop (CCS) where each passenger has to pass a thorough check including body scan. 

All the ACM student members leave the CCS each morning. Each volunteer is to move to one predetermined stop to invite passengers. There are as many volunteers as stops. At the end of the day, all students travel back to CCS. You are to write a computer program that helps ACM to minimize the amount of money to pay every day for the transport of their employees. 

Input

The input consists of N cases. The first line of the input contains only positive integer N. Then follow the cases. Each case begins with a line containing exactly two integers P and Q, 1 <= P,Q <= 1000000. P is the number of stops including CCS and Q the number of bus lines. Then there are Q lines, each describing one bus line. Each of the lines contains exactly three numbers - the originating stop, the destination stop and the price. The CCS is designated by number 1. Prices are positive integers the sum of which is smaller than 1000000000. You can also assume it is always possible to get from any stop to any other stop.

Output

For each case, print one line containing the minimum amount of money to be paid each day by ACM for the travel costs of its volunteers.

Sample Input

2
2 2
1 2 13
2 1 33
4 6
1 2 10
2 1 60
1 3 20
3 4 10
2 4 5
4 1 50

Sample Output

46
210
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
using namespace std;
#define ll long long
#define inf 0x7fffffff
#define N 1212121
struct node
{
int u,v,w,next;
}e[N];
int dis[N];
int vis[N];
int head[N];
int n,m,t,tot;
/*建立邻接表*/
void add(int u,int v,int w)
{
e[tot].u=u;
e[tot].v=v;
e[tot].w=w;
e[tot].next=head[u];
head[u]=tot++;
}
/*spfa算法*/
ll spfa(int s)
{
for(int i=1;i<=n;++i)
{
dis[i]=inf;
vis[i]=0;
}
vis[s]=1;
dis[s]=0;
queue<int> q;
q.push(s);//这样每一次都是求一号点到各个点的最短路,降低了复杂度
while(!q.empty())
{
int now=q.front();
q.pop();
vis[now]=0;
for(int i=head[now];i!=-1;i=e[i].next)
{
if(dis[e[i].v]>dis[now]+e[i].w)
{
dis[e[i].v]=dis[now]+e[i].w;
if(!vis[e[i].v])
{
vis[e[i].v]=1;
q.push(e[i].v);
}
}
}
}
ll ans=0;
for(int i=1;i<=n;i++)
{
if(dis[i]!=inf)
{
ans+=dis[i];
}
}
return ans;
}
int main()
{
scanf("%d",&t);
while(t--)
{
int a,b,c;
tot=0;
scanf("%d%d",&n,&m);
memset(head,-1,sizeof(head));
for(int i=0;i<m;i++)
{
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
ll sum=spfa(1);
memset(head,-1,sizeof(head));
tot=0;
for(int i=0;i<m;i++)
{
a=e[i].u;
b=e[i].v;
c=e[i].w;
add(b,a,c);
}
sum+=spfa(1);
printf("%lld\n",sum);
}
}


D - D (最短路解决源点到多点,多点到源点的和(有向图))的更多相关文章

  1. E - E(最短路解决源点到多点,多点到源点的和(有向图))

    问从1号点到各个点的距离+各个点到1号点之间的距离和的最小值 详解键连接https://www.cnblogs.com/csx-zzh/p/13411588.html In the age of te ...

  2. HDU 2680 最短路 迪杰斯特拉算法 添加超级源点

    Choose the best route Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  3. P1828 香甜的黄油 Sweet Butter 最短路 寻找一个点使得所有点到它的距离之和最小

    P1828 香甜的黄油 Sweet Butter 闲来无事 写了三种最短路(那个Floyed是不过的) 题目描述 农夫John发现做出全威斯康辛州最甜的黄油的方法:糖.把糖放在一片牧场上,他知道N(1 ...

  4. POJ 1511 最短路spfa

    题很简单 就是有向图中求给出的源点到其余所有点的最短路的和与其余所有点到源点的最短路之和 一开始以为dij对于正权图的单源最短路是最快的 写了一发邻接表的dij 结果超时 把所有的cin改成scanf ...

  5. Wormholes 最短路判断有无负权值

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

  6. 详解zkw算法解决最小费用流问题

    网络流的一些基本概念 很多同学建立过网络流模型做题目, 也学过了各种算法, 但是对于基本的概念反而说不清楚. 虽然不同的模型在具体叫法上可能不相同, 但是不同叫法对应的思想是一致的. 下面的讨论力求规 ...

  7. Bellman-Ford 求含负权最短路

    该算法详解请看   https://www.cnblogs.com/tanky_woo/archive/2011/01/17/1937728.html 单源最短路   当图中存在负权边时 迪杰斯特拉就 ...

  8. 最短路之SPFA算法

    部分来自:http://blog.csdn.net/juststeps/article/details/8772755 求最短路径的算法有许多种,除了排序外,恐怕是OI界中解决同一类问题算法最多的了. ...

  9. 关于dijkstra的优化 及 多源最短路

    先来看这样一道题目 给你N个点,M条双向边,要求求出1号点到其他所有点的距离.其中 2 <= N <= 1e5,  1 <=M <= 1e6. 对于这样的一道题目 我们当然不可 ...

随机推荐

  1. 使用GitHub Actions自动编译部署hexo博客

    前言 使用hexo博客也挺久的,最开始是本地hexo clean && hexo g,最后hexo d推送到服务器.后来是本地hexo clean && hexo g, ...

  2. 使用Spring中@Async注解实现异步调用

    异步调用? 在解释异步调用之前,我们先来看同步调用的定义:同步就是整个处理过程顺序执行,当各个过程都执行完毕,并返回结果. 异步调用则是只是发送了调用的指令,调用者无需等待被调用的方法完全执行完毕,继 ...

  3. linux kernel操作GPIO函数

    一.头文件 #include <asm/gpio.h> 二.注册 GPIO int gpio_request(unsigned gpio, const char *label) 功能:申请 ...

  4. dbms_job和dbms_job基础学习

    一.dbms_job学习 a.创建job: dbms_job.submit(jobno,what,next_date,interval);b.删除job: dbms_job.remove(jobno) ...

  5. Go语言从入门到放弃(设置 go get 为国内源)

    前言 Go语言学到 Gin 框架了, 其实每天学习是比较辛苦的事情, 坚持下去! 在使用 Go 过程中发现, 最无奈的是Go的一些模块下不下来, 即便挂了V, 油管2k不卡的那种, 依旧是 time ...

  6. win7安装oracle11g和oracle client和pl/sql

    一.安装oracle11g 1.下载Oracle 11g R2 for Windows的版本 下载地址:hhttps://www.oracle.com/technetwork/database/ent ...

  7. .NET Core引入日志(Log4Net篇)

    Demo版本信息如下: VS:2019 框架:.Net Core 3.1 Log4Net:2.0.12 思维导图: [1]添加依赖项 通过nuget添加Log4Net [2]创建公共类 添加公共类Lo ...

  8. wpf 通过为DataGrid所绑定的数据源类型的属性设置Attribute改变DataGrid自动生成列的顺序

    环境Win10 VS2019 .Net Framework4.8 在wpf中,如果为一个DataGrid绑定到一个数据源,默认情况下DataGrid会为数据源类型的每个属性生成一个列(Column)对 ...

  9. SDUST数据结构 - 19级期末考试

    判断题: 选择题: 函数题: 6-1 统计二叉树叶子结点个数: 题目: 裁判测试程序样例: #include <stdio.h> #include <stdlib.h> typ ...

  10. 开发进阶:Dotnet Core多路径异步终止

    今天用一个简单例子说说异步的多路径终止.我尽可能写得容易理解吧,但今天的内容需要有一定的编程能力.   今天这个话题,来自于最近对gRPC的一些技术研究. 话题本身跟gRPC没有太大关系.应用中,我用 ...