codeforces 1009D Relatively Prime Graph【欧拉函数】
题目:戳这里
题意:要求构成有n个点,m条边的无向图,满足每条边上的两点互质。
解题思路:
显然1~n这n个点能构成边的条数,就是2~n欧拉函数之和(x的欧拉函数值代表小于x且与x互质的数的个数。
因此m>n-1 && m <= sum成立则可以构成无向图。
接着求出1e5以内的欧拉函数,求和可以发现前1000项的欧拉值就已经远远大于1e5。
所以m条边直接两层循环暴力即可。
附本人代码:
1 #include <bits/stdc++.h>
2 typedef long long ll;
3 const int maxn = 1e5+10;
4 const ll inf = 1e18;
5 const ll mod = 1e9+7;
6 using namespace std;
7 ll cnt[maxn];
8 ll euler[maxn];
9 void geteuler() {
10 memset(euler, 0, sizeof(euler));
11 euler[1] = 1;
12 for(ll i = 2; i < maxn; ++i) {
13 if(!euler[i]) {
14 for(ll j = i; j < maxn; j+=i) {
15 if(!euler[j]) euler[j] = j;
16 euler[j] = euler[j]/i * (i - 1ll);
17 }
18 }
19 }
20 }
21 ll gcd(ll a, ll b) {return b?gcd(b,a%b):a;}
22 int main(){
23 ll n, m;
24 ll sum = 0;
25 scanf("%lld %lld", &n, &m);
26 geteuler();
27 for(ll i = 2; i <= n; ++i) {
28 sum += euler[i];
29 }
30
31 // printf("%lld\n", sum);
32 if(sum < m || m < n - 1) {
33 puts("Impossible");
34 return 0;
35 }
36 puts("Possible");
37 for(ll i = 1; i <= n; ++i) {
38 for(ll j = i + 1; j <= n; ++j) {
39 if(gcd(i,j)==1) {
40 printf("%lld %lld\n", i, j);
41 --m;
42 if(!m) return 0;
43 }
44 }
45 }
46 return 0;
47 }
codeforces 1009D Relatively Prime Graph【欧拉函数】的更多相关文章
- Codeforces 906D Power Tower(欧拉函数 + 欧拉公式)
题目链接 Power Tower 题意 给定一个序列,每次给定$l, r$ 求$w_{l}^{w_{l+1}^{w_{l+2}^{...^{w_{r}}}}}$ 对m取模的值 根据这个公式 每次 ...
- CodeForces - 1009D Relatively Prime Graph
题面在这里! 直接暴力找点对就行了,可以证明gcd=1是比较密集的,所以复杂度略大于 O(N log N) #include<bits/stdc++.h> #define ll long ...
- Codeforces 1114F Please, another Queries on Array? [线段树,欧拉函数]
Codeforces 洛谷:咕咕咕 CF少有的大数据结构题. 思路 考虑一些欧拉函数的性质: \[ \varphi(p)=p-1\\ \varphi(p^k)=p^{k-1}\times (p-1)= ...
- Codeforces Round #538 (Div. 2) F 欧拉函数 + 区间修改线段树
https://codeforces.com/contest/1114/problem/F 欧拉函数 + 区间更新线段树 题意 对一个序列(n<=4e5,a[i]<=300)两种操作: 1 ...
- CodeForces - 645F:Cowslip Collections (组合数&&欧拉函数)
In an attempt to make peace with the Mischievious Mess Makers, Bessie and Farmer John are planning t ...
- Codeforces 871D Paths (欧拉函数 + 结论)
题目链接 Round #440 Div 1 Problem D 题意 把每个数看成一个点,如果$gcd(x, y) \neq 1$,则在$x$和$y$之间连一条长度为$1$的无向边. ...
- Codeforces 1114F(欧拉函数、线段树)
AC通道 要点 欧拉函数对于素数有一些性质,考虑将输入数据唯一分解后进行素数下的处理. 对于素数\(p\)有:\(\phi(p^k)=p^{k-1}*(p-1)=p^k*\frac{p-1}{p}\) ...
- Please, another Queries on Array?(Codeforces Round #538 (Div. 2)F+线段树+欧拉函数+bitset)
题目链接 传送门 题面 思路 设\(x=\prod\limits_{i=l}^{r}a_i\)=\(\prod\limits_{i=1}^{n}p_i^{c_i}\) 由欧拉函数是积性函数得: \[ ...
- Codeforces 776E: The Holmes Children (数论 欧拉函数)
题目链接 先看题目中给的函数f(n)和g(n) 对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n) 证明f(n)=phi(n) 设有命题 对任意自然 ...
随机推荐
- 解决ROR 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'creat table study_record( id int(11) not null
之前一直用的好好的,突然就出现了这个错误: ERROR 1064 (42000): You have an error in your SQL syntax; check the manual tha ...
- C# ADO.NET连接字符串详解
C#中连接字符串包含以下内容 参数 说明 Provider 设置或者返回提供的连接程式的名称,仅用于OLeDbConnection对象 Connection Timeout 在终止尝试并产生异常前,等 ...
- 面试时通过volatile关键字,全面展示线程内存模型的能力
面试时,面试官经常会通过volatile关键字来考核候选人在多线程方面的能力,一旦被问题此类问题,大家可以通过如下的步骤全面这方面的能力. 1 首先通过内存模型说明volatile关键字的作用 ...
- file转化为binary对象发送给后台
具体代码如下: function filechange(e) { var file = $('#filed').get(0).files[0]; var fileSize = file.size, f ...
- 使用Bat自动打包并通过FTP发送到备份服务器——实战测试
这个bat文件要求本地安装有winrar解压软件,位置是:C:\Program Files\WinRAR\WinRAR.exe 如果执行报错,请检查你复制我的代码是否有问题,有些复制粘贴进去后因为一些 ...
- int ping = 11; 限流 客户端验证与服务端是连接的
int ping = 11; ZooKeeper Programmer's Guide https://zookeeper.apache.org/doc/r3.1.2/zookeeperProgram ...
- 为什么要使用 do while(0)?
两点 避免宏定义的花括号对代码的完整性造成影响 可以在指定的代码块中(do{})使用break提前跳出,避免goto.
- 作为一款内存数据库,为什么断电后Redis数据不会丢失
前言 Redis 作为一款内存数据库,被广泛使用于缓存,分布式锁等场景,那么假如断电或者因其他因素导致 Reids 服务宕机,在重启之后数据会丢失吗? Redis 持久化机制 Redis 虽然是定义为 ...
- 20201102gryz模拟赛解题报告
简述我的苦逼做题经历 考的是NOIP2017day1原题, 开始看到小凯的疑惑时感觉特水,因为这题初中老师讲过, 很nice的秒切 T2发现是个大模拟,虽然字符串不太会用,但起码题意很好理解 边打代码 ...
- Windows VS Code 配置 Java 开发环境
Windows VS Code 配置 C/C++ 开发环境 准备 Windows [这个相信大家都有 笑: )] VS Code JDK 建议 JDK8以上(不包含JDK8,关于 Windows环境下 ...