Manachar’s Algorithm

Longest palindromic substring - Wikipedia  https://en.wikipedia.org/wiki/Longest_palindromic_substring

Longest palindromic substring

From Wikipedia, the free encyclopedia
 
 
 

Jump to navigationJump to search

In computer science, the longest palindromic substring or longest symmetric factor problem is the problem of finding a maximum-length contiguous substring of a given string that is also a palindrome. For example, the longest palindromic substring of "bananas" is "anana". The longest palindromic substring is not guaranteed to be unique; for example, in the string "abracadabra", there is no palindromic substring with length greater than three, but there are two palindromic substrings with length three, namely, "aca" and "ada". In some applications it may be necessary to return all maximal palindromic substrings (that is, all substrings that are themselves palindromes and cannot be extended to larger palindromic substrings) rather than returning only one substring or returning the maximum length of a palindromic substring.

Manacher (1975) invented a linear time algorithm for listing all the palindromes that appear at the start of a given string. However, as observed e.g., by Apostolico, Breslauer & Galil (1995), the same algorithm can also be used to find all maximal palindromic substrings anywhere within the input string, again in linear time. Therefore, it provides a linear time solution to the longest palindromic substring problem. Alternative linear time solutions were provided by Jeuring (1994), and by Gusfield (1997), who described a solution based on suffix trees. Efficient parallel algorithms are also known for the problem.[1]

The longest palindromic substring problem should not be confused with the different problem of finding the longest palindromic subsequence.

Manacher's algorithm[edit]

To find a longest palindrome in a string in linear time, an algorithm may take advantage of the following characteristics or observations about a palindrome and a sub-palindrome:

  1. The left side of a palindrome is a mirror image of its right side.
  2. (Case 1) A third palindrome whose center is within the right side of a first palindrome will have exactly the same length as a second palindrome anchored at the mirror center on the left side, if the second palindrome is within the bounds of the first palindrome by at least one character (not meeting the left bound of the first palindrome). Such as "dacabacad", the whole string is the first palindrome, "aca" in the left side as second palindrome, "aca" in the right side as third palindrome. In this case, the second and third palindrome have exactly the same length.
  3. (Case 2) If the second palindrome meets or extends beyond the left bound of the first palindrome, then the distance from the center of the second palindrome to the left bound of the first palindrome is exactly equal to the distance from the center of the third palindrome to the right bound of the first palindrome.
  4. To find the length of the third palindrome under Case 2, the next character after the right outermost character of the first palindrome would then be compared with its mirror character about the center of the third palindrome, until there is no match or no more characters to compare.
  5. (Case 3) Neither the first nor second palindrome provides information to help determine the palindromic length of a fourth palindrome whose center is outside the right side of the first palindrome.
  6. It is therefore desirable to have a palindrome as a reference (i.e., the role of the first palindrome) that possesses characters farthest to the right in a string when determining from left to right the palindromic length of a substring in the string (and consequently, the third palindrome in Case 2 and the fourth palindrome in Case 3 could replace the first palindrome to become the new reference).
  7. Regarding the time complexity of palindromic length determination for each character in a string: there is no character comparison for Case 1, while for Cases 2 and 3 only the characters in the string beyond the right outermost character of the reference palindrome are candidates for comparison (and consequently Case 3 always results in a new reference palindrome while Case 2 does so only if the third palindrome is actually longer than its guaranteed minimum length).
  8. For even-length palindromes, the center is at the boundary of the two characters in the middle.

Pseudocode[edit]

    given string S
string S' = S with a bogus character (eg. '|') inserted between each character (including outer boundaries)
array P = [0,...,0] // To store the lengths of the palindrome for each center point in S'
// note: length(S') = length(P) = 2 × length(S) + 1 // Track the following indices into P or S'
R = 0 // The next element to be examined; index into S
C = 0 // The largest/left-most palindrome whose right boundary is R-1; index into S
i = 1 // The next palindrome to be calculated; index into P
define L = i − (R − i) // Character candidate for comparing with R; index into S
define i' = C − (i − C) // The palindrome mirroring i from C; index into P while R < length(S'):
If i is within the palindrome at C (Cases 1 and 2):
Set P[i] = P[i'] // note: recall P is initialized to all 0s // Expand the palindrome at i (primarily Cases 2 and 3; can be skipped in Case 1,
// though we have already shown that S'[R] ≠ S'[L] because otherwise the palindrome
// at i' would have extended at least to the left edge of the palindrome at C):
while S'[R] == S'[L]:
increment P[i]
increment R If the palindrome at i extends past the palindrome at C:
update C = i increment i return max(P)

This diverges a little from Manacher's original algorithm primarily by deliberately declaring and operating on R in such a way to help show that the runtime is in fact linear. You can see in the pseudo-code that RC and i are all monotonically increasing, each stepping through the elements in S' and P. (the end condition was also changed slightly to not compute the last elements of P if R is already at the end - these will necessarily have lengths less than P[C] and can be skipped).

The use of S' provides a couple of simplifications for the code: it provides a string aligned to P allowing direct use of the pointers in both arrays and it implicitly enables the inner while-loop to double-increment P[i] and R (because every other time it will be comparing the bogus character to itself).

Notes

Manachar’s Algorithm Tutorials & Notes | Algorithms | HackerEarth https://www.hackerearth.com/practice/algorithms/string-algorithm/manachars-algorithm/tutorial/

Manacher's Algorithm - Linear Time Longest Palindromic Substring - Part 1 - GeeksforGeeks https://www.geeksforgeeks.org/manachers-algorithm-linear-time-longest-palindromic-substring-part-1/

Manachar’s Algorithm的更多相关文章

  1. Manachar's Algorithm

    1.模板 1 #include<bits/stdc++.h> 2 using namespace std; 3 const int MAX=21000020; 4 char s[MAX], ...

  2. bzoj 3676 回文串 manachar+hash

    考虑每个回文串,它一定是它中心字母的最长回文串两侧去掉同样数量的字符后的一个子串. 所以我们可以用manachar求出每一位的回文半径,放到哈希表里并标记出它的下一个子串. 最后拓扑排序递推就行了.. ...

  3. BZOJ 2342 & manachar+最优性剪枝

    题意: 求最长回文串,串的两边都是回文串. Solution: manachar预处理然后暴力找... Code: #include <iostream> #include <cst ...

  4. bzoj 3160: 万径人踪灭 manachar + FFT

    3160: 万径人踪灭 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 133  Solved: 80[Submit][Status][Discuss] ...

  5. hdu 3068 最长回文(manachar模板)

    Problem Description 给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度.回文就是正反读都是一样的字符串,如aba, abba等   Input 输 ...

  6. HDU 3294 Girls' research(manachar模板题)

    Girls' researchTime Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total ...

  7. HDU 3068 最长回文(manachar算法)

    最长回文 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  8. Manachar算法详解

    求解最长回文串之Manachar算法 问题类型: 输入一个字符串,求出其中最大的回文子串.子串的含义是:在原串中连续出现的字符串片段. 回文的含义是:正着看和倒着看相同,如abba和yyxyy. 这类 ...

  9. hdu 4513 吉哥系列故事——完美队形II (manachar算法)

    吉哥系列故事——完美队形II Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) P ...

随机推荐

  1. NIO 的工作方式

    NIO 的工作方式 BIO 带来的挑战 BIO : BIO 通信模型,通常由一个独立的 Acceptor 线程负责监听客户端的连接,接受到请求之后,为每个客户端创建一个新的线程进行链路处理,处理完成之 ...

  2. JavaScript 获取数组对象中某一值封装为数组

    1.获取数组对象中某一值封装为数组(一) data = [["2000-06-05",116],["2000-06-06",129]]; var dateLis ...

  3. [LeetCode]234. Palindrome Linked List判断回文链表

    重点是: 1.快慢指针找到链表的中点.快指针一次走两步,慢指针一次走一步,分清奇偶数情况. 2.反转链表.pre代表已经反转好的,每次将当前节点指向pre /* 快慢指针得到链表中间,然后用206题方 ...

  4. Qt学习笔记-更高级的文本编辑器-完善第一版-gif动画

    现在的浏览器大多都有动作图标,现在我们也为浏览器加上图标. 在网上搜索到了几个ico的图标.现在直接拿来用. 首先创建资源文件. 在工程名上鼠标右键,选择add new 然后再选择 Qt Resour ...

  5. python-scrapy爬取某招聘网站(二)

    首先要准备python3+scrapy+pycharm 一.首先让我们了解一下网站 拉勾网https://www.lagou.com/ 和Boss直聘类似的网址设计方式,与智联招聘不同,它采用普通的页 ...

  6. 伯俊BOS2.0关于订金单的处理方案

    订金单功能调整设计 一.     功能确认 BPOS关于订金的使用对应的是"预收单",原"预收单"设置有商品明细,根据客户对订金的需求,取消原有"商品 ...

  7. JS常见面试题,看看你都会多少?

    1. 如何在ES5环境下实现let 这个问题实质上是在回答let和var有什么区别,对于这个问题,我们可以直接查看babel转换前后的结果,看一下在循环中通过let定义的变量是如何解决变量提升的问题 ...

  8. 十、scala、spark集群搭建

    spark集群搭建: 1.上传scala-2.10.6.tgz到master 2.解压scala-2.10.6.tgz 3.配置环境变量 export SCALA_HOME=/mnt/scala-2. ...

  9. mac强制关闭应用

    原文链接http://zhhll.icu/2020/08/13/Mac/%E5%BC%BA%E5%88%B6%E7%BB%88%E6%AD%A2%E5%BA%94%E7%94%A8/ 有时候使用Mac ...

  10. oracle坚决不挂01(表,索引,视图的创建,修改,删除,查询)

    考试快来了,来篇oracle干货,复习一下(挣扎一下) 废话不多说,开始写! 这篇是数据库对象的有关操作的总结! 数据库对象有熟悉的表,视图,索引,序列,同义词等(这个oracle东西真不少,小声bb ...