洛谷 P6602 数轴
时光倒流+暴力+尺取
第一次看到这题,是在神子杏的课堂上
这就是一个裸的双指针,洛咕上多倍经验的题太多了。 ——神子杏
那好,我们就用双指针来考虑这道题。
首先可以发现
- 答案区间$ (l,r) $ 一定在某两个标记点之间,也就是说,$l-1 $ 应当是一个有标记点,\(r+1\) 也应是一个有标记的点。
证明很显然,假如右端点的右侧没有标记,那么右端点一定可以继续向右延伸。左端点同理。
往数轴上增加标记不好做,考虑从数轴上拿走标记。我们可以预处理出所有标记点都在数轴上时的答案,也就是输出答案的最后一行。关于这一步,我们可以发现暴力枚举每一个可能的答案区间\((l,r)\)的复杂度为\(O(n^2)\),这显然是不能接受的。发现每当我们确定一个左端点l,则随着l的增大,r是单调不降的。基于这一性质,考虑用双指针扫一遍,\(O(n)\)美滋滋。
接下来考虑依次删去每一个标记,即将这一标记的权值设为\(0\),同时统计对应的答案。统计答案的方法同上。但是我们会发现这样单次复杂度最坏是\(O(n)\),不能接受。
还需要注意的是,题目中要求标记个数不大于k,发现k很小,考虑暴力做。可以发现
- 删除一个标记点时,至多只会影响这个点左侧k个和右侧k个点(想一想,为什么)。
所以我们只需要在每次删除时,以\(O(k)\)的复杂度用双指针来找这个标记点的左右能不能作为答案即可。
继续考虑优化。删除一个标记,我们不仅删除它的权值,而且删除这个标记的在数组存储中的下标,枚举端点的时候直接跳过它。没错,我们可以使用一个链表来维护每一个端点的前驱和后继。在删除标记时,只需修改其前驱后继的关系即可。
最后需要特判一种情况:删除上一个标记点时的答案区间为\((l0,r0)\),删除当前标记点的答案区间为\((l,r)\),两个区间不是包含关系。这时需要将当前的答案取两者中较大的即可。
则总复杂度为\(O(nk)\)
Code
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e+6+100;
const int inf = 0x7f7f7f7f;
struct Data{
int x,a,tim;
};
int n,m,k;
Data opt[maxn];
int tim[maxn];
int ans[maxn];
int pre[maxn],suc[maxn];
inline int read(){
int v=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-f; ch = getchar();}
while(ch>='0'&&ch<='9'){v=(v<<3)+(v<<1)+ch-'0';ch=getchar();}
return v*f;
}
inline bool cmp(Data x,Data y){
return x.x<y.x;
}
int main(){
n=read();m=read();k=read();
for(register int i=1;i<=n;++i){
opt[i].x=read();opt[i].a=read();opt[i].tim = i;
ans[i] = -1;
}
opt[n+1]=Data{-1,inf,0};
opt[n+2]=Data{m+1,inf,0};
sort(opt+1,opt+n+3,cmp);
for(register int i=1;i<=n+2;++i) tim[opt[i].tim] = i;
for(register int l=1,r=1,cnt=0;r<=n+2;++r){
cnt+=opt[r].a;
while(cnt>k){
cnt-=opt[l++].a;
if(l>r) break;;
}
if(k==0) ans[n] = max(ans[n],opt[r].x-opt[r-1].x-2);
else ans[n]=max(ans[n],opt[r+1].x-opt[l-1].x-2);
}
for(register int i=1;i<=n+2;++i){
if(i!=1)pre[i] = i-1;
suc[i] = i+1;
}
for(register int i=n-1;i>=1;--i){
int t=tim[i+1];
opt[t].a=0;
pre[suc[t]] = pre[t];
suc[pre[t]] = suc[t];
int r=t,lim=t;
for(int p=0;p<=k+10;++p){
r=max(pre[r],2);
lim=min(suc[lim],n+2);
}
for(register int l=r,cnt=0;r<=lim;r=suc[r]){
cnt+=opt[r].a;
while(cnt>k){
cnt-=opt[l].a;
l=suc[l];
}
if(k==0) ans[i] = max(ans[i],opt[r].x-opt[pre[r]].x-2);
else ans[i] = max(ans[i],opt[suc[r]].x-opt[pre[l]].x-2);
}
ans[i]=max(ans[i+1],ans[i]);
}
for(register int i=1;i<=n;++i) printf("%d\n",ans[i]);
return 0;
}
洛谷 P6602 数轴的更多相关文章
- USACO Section 1.3 题解 (洛谷OJ P1209 P1444 P3650 P2693)
usaco ch1.4 sort(d , d + c, [](int a, int b) -> bool { return a > b; }); 生成与过滤 generator&& ...
- 洛谷AT2046 Namori(思维,基环树,树形DP)
洛谷题目传送门 神仙思维题还是要写点东西才好. 树 每次操作把相邻且同色的点反色,直接这样思考会发现状态有很强的后效性,没办法考虑转移. 因为树是二分图,所以我们转化模型:在树的奇数层的所有点上都有一 ...
- [洛谷P4609] [FJOI2016]建筑师
洛谷题目链接:[FJOI2016]建筑师 题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 \(n\) 个建筑,每个建筑的高度是 \(1\) 到 \(n\) 之间的一 ...
- 【洛谷】P1052 过河【DP+路径压缩】
P1052 过河 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙 ...
- 「洛谷5017」「NOIP2018」摆渡车【DP,经典好题】
前言 在考场被这个题搞自闭了,那个时候自己是真的太菜了.qwq 现在水平稍微高了一点,就过来切一下这一道\(DP\)经典好题. 附加一个题目链接:[洛谷] 正文 虽然题目非常的简短,但是解法有很多. ...
- 洛谷疯狂coding~
1.关于数学建模思想在coding之中的应用. 将马路作为一条数轴,每棵树的位置作为数轴上的坐标点,再将坐标点与数组的下标联系到一起,完成建模. 2.本题坑点在于对“其中有多少个数,恰好等于集合中另外 ...
- 洛谷P1052 过河
P1052 过河 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上. 由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青 ...
- 洛谷P1712 [NOI2016]区间 尺取法+线段树+离散化
洛谷P1712 [NOI2016]区间 noi2016第一题(大概是签到题吧,可我还是不会) 链接在这里 题面可以看链接: 先看题意 这么大的l,r,先来个离散化 很容易,我们可以想到一个结论 假设一 ...
- 洛谷1640 bzoj1854游戏 匈牙利就是又短又快
bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...
随机推荐
- ASP.NET Core 配置与获取
目录 1,来自字典 2,来自配置文件 3,层次结构 4,映射 ASP.NET Core 中,可以使用 ConfigurationBuilder 对象来构建. 主要分为三部:配置数据源 -> Co ...
- 在windows下使用pip安装python包遇到缺失stdint.h文件的错误
今天在windows上使用pip安装一个python包python-lzf时遇到如下的错误: fatal error C1083: Cannot open include file: 'stdint. ...
- Docker实战(3):Tomcat部署
运行环境:centos7,Docker version 1.13.1,docker tomcat version 8.5.50 创建文件(为映射文件做准备,非固定) mkdir -p /tomcat/ ...
- springboot的文件路径,配置文件
生成springboot会指定一个包路径,启动的class文件在这个目录下,其他的controller等也要在这个目录的子目录下,不然会扫不到. 一般我们会维护两三个配置文件:生产环境,开发环境,测试 ...
- 趣图:普通人讲故事 VS 程序员讲故事
扩展阅读 趣图:我说自己菜 vs 大佬说自己菜 趣图:客户需求VS客户预算 趣图:在外行人眼中的程序员 如何处理前任程序员留下的代码 一个故事讲清楚NIO
- @RequiresPermissions注解的作用,超级简单的权限验证
是shiro里面权限验证的一个注解 @RequiresPermissions(value = {"engineeringPause:download", "workCon ...
- windows提权之mimikatz
mimikatz privilege::debug #提权命令 sekurlsa::logonPasswords #抓取密码 winmine::infos #扫雷作弊 lsadump::lsa /pa ...
- SQL Server 子查询遇到的坑
这两天改 Bug 时使用 Sql Server 的子查询遇到了一些问题,特此记录一下,之前用 MySQL 比较多,按照 MySQL 的语法其实是没有问题的. 以下面这张表为例: 执行以下 SQL: s ...
- Python-对迭代器进行切片操作-itertools模块
案例: 对于某个文件,我只想读取到其中100~200行之间的内容,是否可以通过切片的方式进行读取? 我想: f = open() f[100:200] 可行? 如何解决这个问题? 方法1: 全部读取到 ...
- IDEA配置jQuery,$符号不再显示黄色波浪线
在使用IDEA搭建Maven的Web环境时,编写的JQuery入口函数时,遇到了未知符号的提示,并且在前端页面js的console里报错. 以下是错误信息: 解决方案: 继续看图: 配置成功生效: ...