[

]

I

V

[矩阵乘法]裴波拉契数列IV

[矩阵乘法]裴波拉契数列IV

Description

求数列f[n]=f[n-2]+f[n-1]+n+1的第N项,其中f[1]=1,f[2]:=1.


Input

n(1<n<231-1)


Output

一个数为裴波拉契数列的第n项mod 9973;


Sample Input

10000


Sample Output

4399


题目解析

对于为什么用矩阵乘法来做,详见博客斐波那契数列II

关于递推式略, 详见博客斐波那契数列III,并请独自尝试通过类比来推递推式。

然后可以构造出一个

4

4

4 * 4

4∗4的矩阵

T

T

T

0

1

0

0

1

1

0

0

0

1

1

0

0

1

1

1

\begin{vmatrix} 0 & 1 & 0 & 0\\ 1 & 1 & 0 & 0\\ 0 & 1 & 1 & 0\\ 0 & 1 & 1 & 1\\ \end{vmatrix}

∣∣∣∣∣∣∣∣​0100​1111​0011​0001​∣∣∣∣∣∣∣∣​


Code

#include <cmath>
#include <cstdio>
#include <iostream>
using namespace std; int nt;
const int MOD = 9973; struct matrix
{
int n, m;
int t[10][10];
}t1, t2, t3; matrix operator *(matrix t, matrix r)
{
matrix c;
c.n = t.n, c.m = r.m;
for (int i = 1; i <= c.n; ++ i)
for (int j = 1; j <= c.m; ++ j)
c.t[i][j]=0;
for (int k = 1; k <= t.m; ++ k)
for (int i = 1; i <= t.n; ++ i)
for (int j = 1; j <= r.m; ++ j)
c.t[i][j] = (c.t[i][j] + t.t[i][k] * r.t[k][j] % MOD) % MOD;
return c;
} void rt (int k)
{
if (k == 1)
{
t2 = t1;
return;
}
rt (k / 2);
t2 = t2 * t2;
if (k & 1) t2 = t2 * t1;
} int main()
{
scanf ("%d", &nt);
if (nt == 1)
{
printf ("1");
return 0;
}
t3.n = 1;
t1.n = t1.m = t3.m = 4;
t1.t[1][1] = 0, t1.t[1][2] = 1, t1.t[1][3] = 0, t1.t[1][4] = 0;
t1.t[2][1] = 1, t1.t[2][2] = 1, t1.t[2][3] = 0, t1.t[2][4] = 0;
t1.t[3][1] = 0, t1.t[3][2] = 1, t1.t[3][3] = 1, t1.t[3][4] = 0;
t1.t[4][1] = 0, t1.t[4][2] = 1, t1.t[4][3] = 1, t1.t[4][4] = 1;
t3.t[1][1] = t3.t[1][2] = t3.t[1][4] = 1; t3.t[1][3] = 3;
rt (nt - 1);
t3 = t3 * t2;
printf ("%d", t3.t[1][1]);
return 0;
}

[矩阵乘法]斐波那契数列IV的更多相关文章

  1. [矩阵乘法]裴波拉契数列III

    [ 矩 阵 乘 法 ] 裴 波 拉 契 数 列 I I I [矩阵乘法]裴波拉契数列III [矩阵乘法]裴波拉契数列III Description 求数列f[n]=f[n-1]+f[n-2]+1的第N ...

  2. [矩阵乘法]裴波拉契数列II

    [ 矩 阵 乘 法 ] 裴 波 拉 契 数 列 I I [矩阵乘法]裴波拉契数列II [矩阵乘法]裴波拉契数列II Description 形如 1 1 2 3 5 8 13 21 34 55 89 ...

  3. 矩阵乘法&&矩阵快速幂&&最基本的矩阵模型——斐波那契数列

    矩阵,一个神奇又令人崩溃的东西,常常用来优化序列递推 在百度百科中,矩阵的定义: 在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵.这一 ...

  4. poj3070_斐波那契数列(Fibonacci)

    用矩阵求斐波那契数列,快速幂log(n),只用求最后4位(加和乘的运算中前面的位数无用) #include <stdio.h> #include <stdlib.h> int ...

  5. 斐波那契数列的生成 %1e8 后的结果

    方法一  用数组开,一般开到1e7,1e8 左右的数组就是极限了   对时间也是挑战 #include<bits/stdc++.h> using namespace std; ; int ...

  6. 【poj3070】矩阵乘法求斐波那契数列

    [题目描述] 我们知道斐波那契数列0 1 1 2 3 5 8 13…… 数列中的第i位为第i-1位和第i-2位的和(规定第0位为0,第一位为1). 求斐波那契数列中的第n位mod 10000的值. [ ...

  7. Luogu P1962 斐波那契数列(矩阵乘法模板)

    传送门(其实就是求斐波那契数列....) 累了 明天再解释 做这道题需要一些关于矩阵乘法的基础知识. 1. 矩阵乘法的基础运算 只有当矩阵A的列数等于矩阵B的行数时,A与B可以相乘(A的行数不一定等于 ...

  8. P1349 广义斐波那契数列(矩阵乘法)

    题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...

  9. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

随机推荐

  1. github & webhooks

    github & webhooks git auto commit bash shell script https://developer.github.com/webhooks/ POST ...

  2. CI / CD in Action

    CI / CD in Action Continuous Integration (CI) & Continuous Delivery (CD) https://github.com/mark ...

  3. macOS finder show hidden files

    macOS finder show hidden files 显示 MacOS 上的隐藏文件和文件夹 https://zh.wikihow.com/显示Mac-OS-X上的隐藏文件和文件夹 $ def ...

  4. window resize & resize observer

    window resize & resize observer https://developer.mozilla.org/en-US/docs/Web/API/Window/resize_e ...

  5. js 获取包含emoji的字符串的长度

    let emoji_exp = /(\u00a9|\u00ae|[\u2000-\u3300]|\ud83c[\ud000-\udfff]|\ud83d[\ud000-\udfff]|\ud83e[\ ...

  6. asm 查看字节码

    a.asm global Start section .text inc dword [esi] push edi mov edi,[esp+0x14] λ nasm -f win32 a.asm - ...

  7. mysql explain type详解

    本文转载自最官方的 mysql explain type 字段解读 读了很多别人的笔记都杂乱不堪,很少有实例,什么都不如原装的好,所以当你读到我的笔记的时候如果觉得说的不明白,最好参考官方的手册. 我 ...

  8. java中this和super的用法及区别

    this 用法1:代表当前对象本身 用法2:方法形参和类成员变量重名,用this进行区别 class demo{ private int age = 10; public int getAge(int ...

  9. React高级

    1.React应用 1.1创建应用 创建项目可以使用react脚手架,创建步骤如下 1)安装react脚手架 npm i -g create-react-app 2)创建项目 create-react ...

  10. 从零开始使用 webpack5 搭建 react 项目

    本文的示例项目源码可以点击 这里 获取 一.前言 webpack5 也已经发布一段时间了,其模块联邦.bundle 缓存等新特性值得在项目中进行使用.经过笔者在公司实际项目中的升级结果来看,其提升效果 ...