如果现在要开发一个功能:

要为一款交友App实现查找附近的人,并按距离进行排序。

让你来开发这个功能,你会如何实现?

MySQL 不合适

你可能想到,把用户用户的经纬度坐标使用MySQL等关系数据库(用户id,经度x,纬度y)存储,但是该如何计算距离和排序呢?

不可能通过遍历来计算所有的用户和目标用户的距离,然后再进行排序,因为这个计算量太大了,性能指标肯定无法满足。

GeoHash的编码方法

为了能高效地对经纬度进行比较,Redis 采用了业界广泛使用的 GeoHash 编码方法,这个方法的基本原理是“二分区间,区间编码”。

关于 GeoHash 参考 https://www.cnblogs.com/LBSer/p/3310455.html

简单来说,GeoHash 能够将二维的经纬度转换为字符串,然后位置就能够直接进行比较和范围查询了。

Redis 中 Geo 的使用

命令 说明  可用版本 时间复杂度
GEOADD 添加位置的经纬度 >= 3.2.0 O(logN)
GEOPOS 返回位置的经纬度 >= 3.2.0 O(logN)
GEODIST 返回两个位置的距离 >= 3.2.0 O(logN)
GEORADIUS 返回与指定位置距离距离不大于指定值的位置的经纬度 >= 3.2.0 O(N+logM)
GEORADIUSBYMEMBER 这个命令和 GEORADIUS 命令一样 >= 3.2.0 O(logN+M)
GEOHASH 返回位置的 GeoHash 值 >= 3.2.0 O(logN)

示例

假设用户ID是33,经纬度位置是(116.054579, 39.030452),我们可以用一个 GEO 集合保存所有用户的经纬度,集合 key 是 users:locations。执行下面的这个命令,就可以把ID号为33的用户的当前经纬度位置存入GEO集合中:

GEOADD users:locations 116.034579 39.030452 33

当用户想要寻找自己附近的人时,就可以使用 GEORADIUS 命令。

例如,执行下面的命令,Redis 会根据输入的用户的经纬度信息(116.054579, 39.030452),查找以这个经纬度为中心的5公里内的用户信息。

GEORADIUS users:locations 116.054579 39.030452 5 km ASC COUNT 10

总结

在一个地图应用中,车的数据、餐馆的数据、人的数据可能会有百万千万条,如果使用 Redis 的 Geo 数据结构,它们将全部放在一个 Sorted Set 集合中。在 Redis 的集群环境中,集合可能会从一个节点迁移到另一个节点,如果单个 key 的数据过大,会对集群的迁移工作造成较大的影响,在集群环境中单个 key 对应的数据量不宜超过 1M,否则会导致集群迁移出现卡顿现象,影响线上服务的正常运行。

所以,这里建议 Geo 的数据使用单独的 Redis 实例部署,不使用集群环境。

如果数据量过亿甚至更大,就需要对 Geo 数据进行拆分,按国家拆分、按省拆分,按市拆分,在人口特大城市甚至可以按区拆分。这样就可以显著降低单个 Sorted Set 集合的大小。

参考资料

Redis实战篇(四)基于GEO实现查找附近的人功能的更多相关文章

  1. Redis实战篇

    Redis实战篇 1 Redis 客户端 1.1 客户端通信 原理 客户端和服务器通过 TCP 连接来进行数据交互, 服务器默认的端口号为 6379 . 客户端和服务器发送的命令或数据一律以 \r\n ...

  2. Redis 实战篇:巧用数据类型实现亿级数据统计

    在移动应用的业务场景中,我们需要保存这样的信息:一个 key 关联了一个数据集合,同时还要对集合中的数据进行统计排序. 常见的场景如下: 给一个 userId ,判断用户登陆状态: 两亿用户最近 7 ...

  3. Redis 实战篇:巧用Bitmap 实现亿级海量数据统计

    在移动应用的业务场景中,我们需要保存这样的信息:一个 key 关联了一个数据集合. 常见的场景如下: 给一个 userId ,判断用户登陆状态: 显示用户某个月的签到次数和首次签到时间: 两亿用户最近 ...

  4. Redis实战篇(一)搭建Redis实例

    今天是Redis实战系列的第一讲,先从如何搭建一个Redis实例开始. 下面介绍如何在Docker.Windows.Linux下安装. Docker下安装 1.查看可用的 Redis 版本 访问 Re ...

  5. Redis 实战篇:GEO助我邂逅附近女神

    码老湿,阅读了你的巧用数据类型实现亿级数据统计之后,我学会了如何游刃有余的使用不同的数据类型(String.Hash.List.Set.Sorted Set.HyperLogLog.Bitmap)去解 ...

  6. Redis实战篇(二)基于Bitmap实现用户签到功能

    很多应用上都有用户签到的功能,尤其是配合积分系统一起使用.现在有以下需求: 签到1天得1积分,连续签到2天得2积分,3天得3积分,3天以上均得3积分等. 如果连续签到中断,则重置计数,每月重置计数. ...

  7. Redis实战篇(三)基于HyperLogLog实现UV统计功能

    如果现在要开发一个功能: 统计APP或网页的一个页面,每天有多少用户点击进入的次数.同一个用户的反复点击进入记为 1 次,也就是统计 UV 数据. 让你来开发这个统计模块,你会如何实现? 如果统计 P ...

  8. Redis 实战篇之搭建集群

    Redis 集群简介# Redis Cluster 即 Redis 集群,是 Redis 官方在 3.0 版本推出的一套分布式存储方案.完全去中心化,由多个节点组成,所有节点彼此互联.Redis 客户 ...

  9. 微信小程序实战篇:基于wxcharts.js绘制移动报表

    前言 微信小程序图表插件(wx-charts)是基于canvas绘制,体积小巧,支持图表类型饼图.线图.柱状图 .区域图等图表图形绘制,目前wx-charts是微信小程序图表插件中比较强大好使的一个. ...

随机推荐

  1. LeetCode & list cycle

    LeetCode & list cycle 链表是否存在环检测 singly-linked list 单链表 "use strict"; /** * * @author x ...

  2. js & array & shuffle

    js & array & shuffle const list = [1, 2, 3, 4, 5, 6, 7, 8, 9]; list.sort(() => Math.rando ...

  3. no code form generator

    no code form generator 无代码,表单生成器 H5 Drag & Drop UI => codes click copy demo https://www.forms ...

  4. taro & Error: spawn taro ENOENT

    taro & Error: spawn taro ENOENT https://stackoverflow.com/questions/27688804/how-do-i-debug-erro ...

  5. MacBook Pro 2019 13 inch & screen blink

    MacBook Pro 2019 13 inch & screen blink MacBook Pro 闪屏 https://macreports.com/mac-how-to-trouble ...

  6. 灰度发布 & A/B 测试

    灰度发布 & A/B 测试 http://www.woshipm.com/pmd/573429.html 8 https://testerhome.com/topics/15746 scree ...

  7. Masterboxan INC 下半年将聚焦超高净值和家族全权委托客户

    "投资是一个没有终点的奋斗.我们不能简单的预测市场,而是应对市场做出正确的反应.这需要我们不断反思.总结.提升,找到自己的投资哲学,然后用一生的时间去坚守."Masterboxan ...

  8. 系统错误,MSVCP100D.dll找不到或丢失!

    文章首发 | 公众号:lunvey 今日研究c++,找了一些示例程序,发现无法打开.弹出如下的报错提示: 作为新时代人类,遇见问题第一件事情就是问度娘.然而眼花缭乱的检索数据,大家众说纷纭,不知道如何 ...

  9. python中的enumerate 函数(编号的实现方式)

    enumerate 函数用于遍历序列中的元素以及它们的下标: 默认从0开始,如果想从1开始,可以仿照最后案例 加上逗号,和数字编号 >>> for i,j in enumerate( ...

  10. SpringBoot Admin应用监控搭建

    简介 Spring Boot Admin 用于监控基于 Spring Boot 的应用,它是在 Spring Boot Actuator 的基础上提供简洁的可视化 WEB UI. 参考手册地址:htt ...