一、树的定义

树形结构是一类重要的非线性结构。树形结构是结点之间有分支,并具有层次关系的结构。它非常类似于自然界中的树。
树的递归定义:
树(Tree)是n(n≥0)个结点的有限集T,T为空时称为空树,否则它满足如下两个条件:
(1)有且仅有一个特定的称为根(Root)的结点;
(2)其余的结点可分为m(m≥0)个互不相交的子集Tl,T2,…,Tm,其中每个子集本身又是一棵树,并称其为根的子树(Subree)。

二、二叉树的定义

二叉树是由n(n≥0)个结点组成的有限集合、每个结点最多有两个子树的有序树。它或者是空集,或者是由一个根和称为左、右子树的两个不相交的二叉树组成。
特点:
(1)二叉树是有序树,即使只有一个子树,也必须区分左、右子树;
(2)二叉树的每个结点的度不能大于2,只能取0、1、2三者之一;
(3)二叉树中所有结点的形态有5种:空结点、无左右子树的结点、只有左子树的结点、只有右子树的结点和具有左右子树的结点。

三、二叉树的性质

1 :在二叉树的第i层上至少有2^(i-1)个结点

2:深度为k的二叉树至多有2^(k-1)个结点

3:对任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1

4:具有n个结点的完全二叉树的深度是【log2n】+1(向下取整)

5:如果对一棵有n个结点的完全二叉树的结点按层序编号,则对任一结点i(1in),有:

如果i=1,则结点i是二叉树的根,无双亲;如果i>1,则其双亲是i/2

如果2i>n,则结点i无左孩子;如果2in,则其左孩子是2i

如果2i+1>n,则结点i无右孩子;如果2i+1n,则其右孩子是2i+1

二叉树深度算法如下:

深度为m的满二叉树有2^m-1个结点;

具有n个结点的完全二叉树的深度为[log2n]+1.(log2n是以2为底n的对数)

扩展资料:

二叉树是一个连通的无环图,并且每一个顶点的度不大于3。有根二叉树还要满足根结点的度不大于2。有了根结点之后,每个顶点定义了唯一的父结点,和最多2个子结点。然而,没有足够的信息来区分左结点和右结点。如果不考虑连通性,允许图中有多个连通分量,这样的结构叫做森林。

在计算机科学中,二叉树是每个结点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。

一棵深度为k,且有2^k-1个节点的二叉树,称为满二叉树。这种树的特点是每一层上的节点数都是最大节点数。而在一棵二叉树中,除最后一层外,若其余层都是满的,并且最后一层或者是满的,或者是在右边缺少连续若干节点,则此二叉树为完全二叉树。

四、二叉树的存储结构

二叉树的存储结构有顺序存储结构、链式存储结构
顺序存储:结构采用一维数组存储的。根据二叉树的性质6可计算出双亲结点、左右孩子结点的下标。因此满二叉树、完全二叉树的存储可采用一维数组,把结点按从上到下、从左到右的顺序存放在数组中,结点之间的关系可由性质6的公式计算得到。
链式存储:结构采用链表存储二叉树中的数据元素,用链建立二叉树中结点之间的关系。二叉树最常用的链式存储结构是二叉链,每个结点包含三个域,分别是数据元素域data、左孩子链域lChild和右孩子链域rChild。与单链表带头结点和不带头结点的两种情况相似,二叉链存储结构的二叉树也有带头结点和不带头结点两种

五、二叉树的操作

python数据结构之二叉树的建立实例
python数据结构之二叉树的遍历实例
python数据结构之二叉树的统计与转换实例

python数据结构树和二叉树简介的更多相关文章

  1. Python 数据结构 树

    什么是树 数是一种抽象的数据类型(ADT)或是作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合,它是由n(n>1)的有限个节点和节点之间的边组成的一个有层次关系的集合. 树的组成 ...

  2. 常见基本数据结构——树,二叉树,二叉查找树,AVL树

    常见数据结构——树 处理大量的数据时,链表的线性时间太慢了,不宜使用.在树的数据结构中,其大部分的运行时间平均为O(logN).并且通过对树结构的修改,我们能够保证它的最坏情形下上述的时间界. 树的定 ...

  3. Java数据结构——树、二叉树的理论知识汇总

    通用树的理论知识 一.树的定义 由一个或多个(n>=0)节点组成的有限集合T,有且仅有一个节点称为根(root),当n>1时,其7余的节点为m(m>=0)个互不相交的有限集合T1,T ...

  4. [ACM训练] 数据结构----树、二叉树----c++ && python

    树结构,尤其是二叉树结构是算法中常遇见的,这里根据学习过程做一个总结. 二叉树所涉及到的知识点有:满二叉树与完全二叉树.节点数目的关系.节点数与二叉树高度的关系.层次遍历.深度优先遍历.广度优先遍历等 ...

  5. python数据结构与算法——二叉树结构与遍历方法

    先序遍历,中序遍历,后序遍历 ,区别在于三条核心语句的位置 层序遍历  采用队列的遍历操作第一次访问根,在访问根的左孩子,接着访问根的有孩子,然后下一层 自左向右一一访问同层的结点 # 先序遍历 # ...

  6. Python数据结构-树与树的遍历

    树:是一种抽象的数据类型 树的作用:用来模拟树状结构性质的数据集合 树的特点: 每个节点有零个或者多个节点 没有父节点的节点,叫做根节点 每一个根节点有且只有一个父节点 除了根节点外,每个节点可以分成 ...

  7. Python数据结构--树遍历算法

    ''' 遍历是访问树的所有节点的过程,也可以打印它们的值. 因为所有节点都通过边(链接)连接,所以始终从根(头)节点开始. 也就是说,我们不能随机访问树中的一个节点. 这里介绍三种方式来遍历一棵树 - ...

  8. python数据结构与算法

    最近忙着准备各种笔试的东西,主要看什么数据结构啊,算法啦,balahbalah啊,以前一直就没看过这些,就挑了本简单的<啊哈算法>入门,不过里面的数据结构和算法都是用C语言写的,而自己对p ...

  9. python数据结构之树和二叉树(先序遍历、中序遍历和后序遍历)

    python数据结构之树和二叉树(先序遍历.中序遍历和后序遍历) 树 树是\(n\)(\(n\ge 0\))个结点的有限集.在任意一棵非空树中,有且只有一个根结点. 二叉树是有限个元素的集合,该集合或 ...

随机推荐

  1. Python 批量下载BiliBili视频 打包成软件

    文章目录 很多人学习python,不知道从何学起.很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手.很多已经做案例的人,却不知道如何去学习更加高深的知识.那么针对这三类人,我给大家 ...

  2. Spark保存的时候怎么去掉多余的引号转义

    今天用SparkSQL保存一份json数据的时候,引号被转义了,并用括号包起来了,导致下游新来的小伙伴无法处理这份数据. 保存后的数据长这样(用\t分割): data "{\"ke ...

  3. Android开发之数据存储——SharedPreferences基础知识详解,饿补学会基本知识,开发者必会它的用法。

    一.数据存储选项:Data Storage --Storage Options[重点] 1.Shared Preferences Store private primitive data in key ...

  4. P1020 导弹拦截(nlogn求最长不下降子序列)

    题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度.某天,雷达捕捉到敌国的导弹 ...

  5. 深入了解Redis【一】源码下载与参考资料准备

    引言 一直在使用redis,但是却没有系统的了解过它的底层实现,准备边学习边记录,深入了解redis. 打算分析以下几个方面: redis的基本类型及底层原理与java对比,每种数据类型的使用场景 r ...

  6. 一文看懂 YAML

    前言 YAML 并不是一种新奇的语言,YAML 首次发表于 2001 年,距离现在已经过去差不多 20 个年头.YAML 虽然不如 JSON.XML 之类的语言流行,应用也没有那么广泛,但是 YAML ...

  7. Eclipse安装Mat工具分析教程

    一.关于Mat MAT是Memory Analyzer的简称,它是一款功能强大的Java堆内存分析器.可以用于查找内存泄露以及查看内存消耗情况.MAT是基于Eclipse开发的,是一款免费的性能分析工 ...

  8. 如何制作一个手机上的Github图床捷径(workflow)

    准备工作 github账号与绑定邮箱 建立一个仓库用于存放图片 生成github token 注意生成之后要备份以免后面要用到(页面刷新之后会看不见) 了解github上传文件的 GitHub API ...

  9. 吴恩达《深度学习》-第五门课 序列模型(Sequence Models)-第一周 循环序列模型(Recurrent Neural Networks) -课程笔记

    第一周 循环序列模型(Recurrent Neural Networks) 1.1 为什么选择序列模型?(Why Sequence Models?) 1.2 数学符号(Notation) 这个输入数据 ...

  10. Vue中vue.config的配置

    vue-cli 3.x 脚手架搭建完成后,项目目录中没有 vue.config.js 文件,需要手动在根目录中创建 vue.config.js. vue.config.js 是一个可选的配置文件,如果 ...