机器学习中会遇到一些离散型数据,无法带入模型进行训练,所以要对其进行编码,常用的编码方式有两种:

1、特征不具备大小意义的直接独热编码(one-hot encoding)

2、特征有大小意义的采用映射编码(map encoding)

两种编码在sklearn.preprocessing包里有实现方法

映射编码就是用一个字典指定不同离散型数据对应哪些数字

import pandas as pd
df = pd.DataFrame([
['green', 'M', 10.1, 'label1'],
['red', 'L', 13.5, 'label2'],
['blue', 'XL', 15.3, 'label2']])
# color、label不具备大小含义,size具有大小意义
df.columns = ['color', 'size', 'length', 'label']
size_mapping = {
'XL': 3,
'L': 2,
'M': 1}
df['size'] = df['size'].map(size_mapping)

one-hot编码有两种形式:

1.one-hot编码,又称独热编码、一位有效编码。其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都有它独立的寄存器位,并且在任意时候,其中只有一位有效。举个例子,假设我们有四个样本(行),每个样本有三个特征(列),如图:

      

上图中我们已经对每个特征进行了普通的数字编码:我们的feature_1有两种可能的取值,比如是男/女,这里男用1表示,女用2表示。那么one-hot编码是怎么搞的呢?我们再拿feature_2来说明:

这里feature_2 有4种取值(状态),我们就用4个状态位来表示这个特征,one-hot编码就是保证每个样本中的单个特征只有1位处于状态1,其他的都是0。

      

对于2种状态、三种状态、甚至更多状态都是这样表示,所以我们可以得到这些样本特征的新表示:

      

one-hot编码将每个状态位都看成一个特征。对于前两个样本我们可以得到它的特征向量分别为

     

one-hot在提取文本特征上的应用

  one hot在特征提取上属于词袋模型(bag of words)。关于如何使用one-hot抽取文本特征向量我们通过以下例子来说明。假设我们的语料库中有三段话:

    我爱中国

    爸爸妈妈爱我

    爸爸妈妈爱中国

我们首先对预料库分离并获取其中所有的词,然后对每个此进行编号:

    1 我; 2 爱; 3 爸爸; 4 妈妈;5 中国

然后使用one hot对每段话提取特征向量:

 

因此我们得到了最终的特征向量为

    我爱中国  ->   1,1,0,0,1

    爸爸妈妈爱我  ->  1,1,1,1,0

    爸爸妈妈爱中国  ->  0,1,1,1,1

优缺点分析

优点:一是解决了分类器不好处理离散数据的问题,二是在一定程度上也起到了扩充特征的作用(上面样本特征数从3扩展到了9)

缺点:在文本特征表示上有些缺点就非常突出了。首先,它是一个词袋模型,不考虑词与词之间的顺序(文本中词的顺序信息也是很重要的);其次,它假设词与词相互独立(在大多数情况下,词与词是相互影响的);最后,它得到的特征是离散稀疏的。

one-hot的基本思想:将离散型特征的每一种取值都看成一种状态,若你的这一特征中有N个不相同的取值,那么我们就可以将该特征抽象成N种不同的状态,one-hot编码保证了每一个取值只会使得一种状态处于“激活态”,也就是说这N种状态中只有一个状态位值为1,其他状态位都是0。举个例子,假设我们以学历为例,我们想要研究的类别为小学、中学、大学、硕士、博士五种类别,我们使用one-hot对其编码就会得到:

       

2.dummy encoding,哑变量编码直观的解释就是任意的将一个状态位去除。还是拿上面的例子来说,我们用4个状态位就足够反应上述5个类别的信息,也就是我们仅仅使用前四个状态位 [0,0,0,0] 就可以表达博士了。只是因为对于一个我们研究的样本,他已不是小学生、也不是中学生、也不是大学生、又不是研究生,那么我们就可以默认他是博士,是不是。(额,当然他现实生活也可能上幼儿园,但是我们统计的样本中他并不是,^-^)。所以,我们用哑变量编码可以将上述5类表示成:

      

dummy encoding在pandas中有get_dummies()方法可以实现

python对离散数据进行编码的更多相关文章

  1. 利用 pandas 进行数据的预处理——离散数据哑编码、连续数据标准化

    数据的标准化 数据标准化就是将不同取值范围的数据,在保留各自数据相对大小顺序不变的情况下,整体映射到一个固定的区间中.根据具体的实现方法不同,有的时候会映射到 [ 0 ,1 ],有时映射到 0 附近的 ...

  2. python --- 06 小数据池 编码

    一.小数据池, id()    进行缓存 1.小数据池针对的是: int, str, bool 2.在py文件中几乎所有的字符串都会缓存.   在cmd命令窗口中几乎都不会缓存   不同的解释器有不同 ...

  3. Python实现——决策树实例(离散数据/香农熵)

    决策树的实现太...繁琐了. 如果只是接受他的原理的话还好说,但是要想用代码去实现比较糟心,目前运用了<机器学习实战>的代码手打了一遍,决定在这里一点点摸索一下该工程. 实例的代码在使用上 ...

  4. Python分析离散心率信号(下)

    Python分析离散心率信号(下) 如何使用动态阈值,信号过滤和离群值检测来改善峰值检测. 一些理论和背景 到目前为止,一直在研究如何分析心率信号并从中提取最广泛使用的时域和频域度量.但是,使用的信号 ...

  5. 使用Python解析JSON数据的基本方法

    这篇文章主要介绍了使用Python解析JSON数据的基本方法,是Python入门学习中的基础知识,需要的朋友可以参考下:     ----------------------------------- ...

  6. 详解Google-ProtoBuf中结构化数据的编码

    本文的主要内容是google protobuf中序列化数据时用到的编码规则,但是,介绍具体的编码规则之前,我觉得有必要先简单介绍一下google protobuf.因此,本文首先会介绍一些google ...

  7. python标准库之字符编码详解

    codesc官方地址:https://docs.python.org/2/library/codecs.html 相关帮助:http://www.cnblogs.com/huxi/archive/20 ...

  8. 用python处理文本数据 学到的一些东西

    最近写了一个python脚本,用TagMe的api标注文本,并解析返回的json数据.在这个过程中遇到了很多问题,学到了一些新东西,总结一下. 1. csv文件处理 csv是一种格式化的文件,由行和列 ...

  9. Windows下Python读取GRIB数据

    之前写了一篇<基于Python的GRIB数据可视化>的文章,好多博友在评论里问我Windows系统下如何读取GRIB数据,在这里我做一下说明. 一.在Windows下Python为什么无法 ...

随机推荐

  1. How tomcat works(深入剖析tomcat)生命周期Lifecycle

    How Tomcat Works (6)生命周期Lifecycle 总体概述 这一章讲的是tomcat的组件之一,LifeCycle组件,通过这个组件可以统一管理其他组件,可以达到统一启动/关闭组件的 ...

  2. 冰河教你一次性成功安装K8S集群(基于一主两从模式)

    写在前面 研究K8S有一段时间了,最开始学习K8S时,根据网上的教程安装K8S环境总是报错.所以,我就改变了学习策略,先不搞环境搭建了.先通过官网学习了K8S的整体架构,底层原理,又硬啃了一遍K8S源 ...

  3. ansible playbook 安装docker

    1.新增host配置到/etc/ansible/hosts文件中 [docker] 192.168.43.95 2.配置无密码登录 # 配置ssh,默认rsa加密,保存目录(公钥)~/.ssh/id_ ...

  4. go结构体与方法

    go结构体相当于python中类的概念 结构体用来定义复杂的数据结构,存储很多相同的字段属性 1.结构体的定义以及简单实用 package main import ( "fmt" ...

  5. 区块链学习7:超级账本项目Hyperledger与Fabric以及二者的关系

    ☞ ░ 前往老猿Python博文目录 ░ 一.超级账本(hyperledger) 超级账本(hyperledger)是Linux基金会于2015年发起的推进区块链数字技术和交易验证的开源项目,成员包括 ...

  6. 第四十章、PyQt显示部件:QGraphicsView图形视图和QGraphicsScene图形场景简介及应用案例

    专栏:Python基础教程目录 专栏:使用PyQt开发图形界面Python应用 专栏:PyQt入门学习 老猿Python博文目录 老猿学5G博文目录 一.概述 Designer中的Graphics V ...

  7. PyQt(Python+Qt)学习随笔:Designer中PushButton按钮flat属性

    flat属性用于确认按钮边框是否凸起,如果为False则凸起,如果为True则边框与背景是平坦的. 默认值为False,如果设置为True,则除非按下按钮,否则大多数样式都不会绘制按钮背景.通过使用s ...

  8. 分布式计算框架-Spark(spark环境搭建、生态环境、运行架构)

    Spark涉及的几个概念:RDD:Resilient Distributed Dataset(弹性分布数据集).DAG:Direct Acyclic Graph(有向无环图).SparkContext ...

  9. JDBC(一)—— JDBC概述

    Jdbc概述 Java DataBase connectivity(Java语言连接数据库) Jdbc本质是什么? 是Sun公司制定的一套接口,java.sql.* 接口都有调用者和实现者 面向接口调 ...

  10. PHash从0到1

    背景 在重复图识别领域,对于识别肉眼相同图片,PHash是很有用的,而且算法复杂度很低.它抓住了 " 人眼对于细节信息不是很敏感 " 的特性,利用DCT变换把高频信息去掉,再加上合 ...