RandomForestRegressor

class sklearn.ensemble.RandomForestRegressor (n_estimators=’warn’, criterion=’mse’, max_depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’,
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False,
n_jobs=None, random_state=None, verbose=0, warm_start=False)

所有的参数,属性与接口,全部和随机森林分类器一致。仅有的不同就是回归树与分类树的不同,不纯度的指标,
参数Criterion不一致。

1 重要参数,属性与接口

criterion

回归树衡量分枝质量的指标,支持的标准有三种:

1)输入"mse"使用均方误差mean squared error(MSE),父节点和叶子节点之间的均方误差的差额将被用来作为特征选择的标准,这种方法通过使用叶子节点的均值来最小化L2损失
2)输入“friedman_mse”使用费尔德曼均方误差,这种指标使用弗里德曼针对潜在分枝中的问题改进后的均方误差
3)输入"mae"使用绝对平均误差MAE(mean absolute error),这种指标使用叶节点的中值来最小化L1损失

其中N是样本数量,i是每一个数据样本,fi是模型回归出的数值,yi是样本点i实际的数值标签。所以MSE的本质,其实是样本真实数据与回归结果的差异。
在回归树中,MSE不只是我们的分枝质量衡量指标,也是我们最常用的衡量回归树回归质量的指标,当我们在使用交叉验证,或者其他方式获取回归树的结果时,我们往往选择均方误差作为我们的评估(在分类树中这个指标是score代表的预测准确率)。在回归中,我们追求的是,MSE越小越好。

然而,回归树的接口score返回的是R平方,并不是MSE。R平方被定义如下:

其中u是残差平方和(MSE * N),v是总平方和,N是样本数量,i是每一个数据样本,fi是模型回归出的数值,yi是样本点i实际的数值标签。y帽是真实数值标签的平均数。R平方可以为正为负(如果模型的残差平方和远远大于模型的总平方和,模型非常糟糕,R平方就会为负),而均方误差永远为正。

值得一提的是,虽然均方误差永远为正,但是sklearn当中使用均方误差作为评判标准时,却是计算”负均方误差“(neg_mean_squared_error)。这是因为sklearn在计算模型评估指标的时候,会考虑指标本身的性质,均方误差本身是一种误差,所以被sklearn划分为模型的一种损失(loss),因此在sklearn当中,都以负数表示。真正的均方误差MSE的数值,其实就是neg_mean_squared_error去掉负号的数字。

重要属性和接口

最重要的属性和接口,都与随机森林的分类器相一致,还是apply, fit, predict和score最为核心。值得一提的是,随机森林回归并没有predict_proba这个接口,因为对于回归来说,并不存在一个样本要被分到某个类别的概率问题,因此没有predict_proba这个接口。

随机森林回归用法
和决策树完全一致,除了多了参数n_estimators。

from sklearn.datasets import load_boston
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestRegressor boston = load_boston()
regressor = RandomForestRegressor(n_estimators=100,random_state=0)
cross_val_score(regressor, boston.data, boston.target, cv=10
              ,scoring = "neg_mean_squared_error") sorted(sklearn.metrics.SCORERS.keys())

返回十次交叉验证的结果,注意在这里,如果不填写scoring = "neg_mean_squared_error",交叉验证默认的模型
衡量指标是R平方,因此交叉验证的结果可能有正也可能有负。而如果写上scoring,则衡量标准是负MSE,交叉验
证的结果只可能为负。

机器学习实战基础(三十七):随机森林 (四)之 RandomForestRegressor 重要参数,属性与接口的更多相关文章

  1. 机器学习实战基础(十七):sklearn中的数据预处理和特征工程(十)特征选择 之 Embedded嵌入法

    Embedded嵌入法 嵌入法是一种让算法自己决定使用哪些特征的方法,即特征选择和算法训练同时进行.在使用嵌入法时,我们先使用某些机器学习的算法和模型进行训练,得到各个特征的权值系数,根据权值系数从大 ...

  2. 机器学习实战基础(三十六):随机森林 (三)之 RandomForestClassifier 之 重要属性和接口

    重要属性和接口 至此,我们已经讲完了所有随机森林中的重要参数,为大家复习了一下决策树的参数,并通过n_estimators,random_state,boostrap和oob_score这四个参数帮助 ...

  3. 机器学习实战基础(三十五):随机森林 (二)之 RandomForestClassifier 之重要参数

    RandomForestClassifier class sklearn.ensemble.RandomForestClassifier (n_estimators=’10’, criterion=’g ...

  4. python机器学习实战(三)

    python机器学习实战(三) 版权声明:本文为博主原创文章,转载请指明转载地址 www.cnblogs.com/fydeblog/p/7277205.html  前言 这篇notebook是关于机器 ...

  5. R语言︱机器学习模型评估方案(以随机森林算法为例)

    笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评 ...

  6. 机器学习实战基础(三十八):随机森林 (五)RandomForestRegressor 之 用随机森林回归填补缺失值

    简介 我们从现实中收集的数据,几乎不可能是完美无缺的,往往都会有一些缺失值.面对缺失值,很多人选择的方式是直接将含有缺失值的样本删除,这是一种有效的方法,但是有时候填补缺失值会比直接丢弃样本效果更好, ...

  7. 机器学习实战基础(二十二):sklearn中的降维算法PCA和SVD(三) PCA与SVD 之 重要参数n_components

    重要参数n_components n_components是我们降维后需要的维度,即降维后需要保留的特征数量,降维流程中第二步里需要确认的k值,一般输入[0, min(X.shape)]范围中的整数. ...

  8. 机器学习实战基础(十四):sklearn中的数据预处理和特征工程(七)特征选择 之 Filter过滤法(一) 方差过滤

    Filter过滤法 过滤方法通常用作预处理步骤,特征选择完全独立于任何机器学习算法.它是根据各种统计检验中的分数以及相关性的各项指标来选择特征 1 方差过滤 1.1 VarianceThreshold ...

  9. 机器学习实战基础(二十七):sklearn中的降维算法PCA和SVD(八)PCA对手写数字数据集的降维

    PCA对手写数字数据集的降维 1. 导入需要的模块和库 from sklearn.decomposition import PCA from sklearn.ensemble import Rando ...

随机推荐

  1. 撒花,推荐一下我怒肝的 GitHub

    缘起 之前一直有很多小伙伴们找我,让我聊一聊如何学习 Java ,我都直接回复了一个思维导图,后来想一想觉得回答不是很认真,我的初衷是想让小伙伴们根据思维导图中的知识点,采取各个击破 的原则,哪里不会 ...

  2. 最全的DOM事件笔记

    1. DOM事件模型 DOM是微软和网景发生"浏览器大战"时期留下的产物,后来被"W3C"进行标准化,标准化一代代升级与改进,目前已经推行至第四代,即 leve ...

  3. Asp.Net Mvc 控制器详解

    理解控制器 控制器的角色 (1)中转作用:控制器通过前面的学习大家应该知道它是一个承上启下的作用,根据用户输入,执行响应行为(动 作方法),同时在行为中调用模型的业务逻辑,返回给用户结果(视图). ( ...

  4. C++ 进阶 模板和STL

    C++提高编程 本阶段主要针对C++泛型编程和STL技术做详细讲解,探讨C++更深层的使用 1 模板 1.1 模板的概念 模板就是建立通用的模具,大大提高复用性 模板的特点: 模板不可以直接使用,它只 ...

  5. C++核心编程

    C++核心编程 本阶段主要针对C++面向对象编程技术做详细讲解,探讨C++中的核心和精髓. 1 内存分区模型 C++程序在执行时,将内存大方向划分为4个区域 代码区:存放函数体的二进制代码,由操作系统 ...

  6. 13.实战交付一套dubbo微服务到k8s集群(6)之交付dubbo服务的消费者集群到K8S

    构建dubbo-demo-consumer,可以使用和dubbo-demo-service的流水线来构建 1.登录jenkins构建dubbo-demo-consumer  2.填写构建dubbo-d ...

  7. SpringCloud之初识Feign

    在前面的学习中,我们使用了Ribbon的负载均衡功能,大大简化了远程调用时的代码: String baseUrl = "http://user-service/user/"; Us ...

  8. ECSHOP 2.5.1 二次开发文档【文件结构说明和数据库表分析】

    ecshop文件架构说明 /* ECShop 2.5.1 的结构图及各文件相应功能介绍 ECShop2.5.1_Beta upload 的目录 ┣ activity.php 活动列表 ┣ affich ...

  9. ajax前后端交互原理(6)

    6.XMLHttpRequest对象 XMLHttpRequest 是一个 API,它为客户端提供了在客户端和服务器之间传输数据的功能.它提供了一个通过 URL 来获取数据的简单方式,并且不会使整个页 ...

  10. MFC线程(二):线程同步临界区CRITICAL SECTION

    当多个线程同时使用相同的资源时,由于是并发执行,不能保证先后顺序.所以假如时一个公共变量被几个线程同时使用会造成该变量值的混乱. 下面来举个简单例子. 假如有一个字符数组变量 char g_charA ...