项目pom文件

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion> <groupId>com.jike.flink</groupId>
<artifactId>flink-demo</artifactId>
<version>1.0-SNAPSHOT</version> <properties>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<encoding>UTF-8</encoding>
<flink.version>1.10.0</flink.version>
</properties> <dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>${flink.version}</version>
</dependency> <dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_2.11</artifactId>
<version>${flink.version}</version>
<scope>provided</scope>
</dependency> <!-- flink 11中需要手动添加
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_2.11</artifactId>
<version>1.11.2</version>
</dependency>
--> <dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-redis_2.11</artifactId>
<version>1.1.5</version>
<scope>system</scope>
<systemPath>${basedir}/lib/flink-connector-redis_2.11-1.1.5.jar</systemPath>
</dependency> <dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>2.8.0</version>
<scope>compile</scope>
</dependency> </dependencies> </project>

实现flink写入redis

实现wordcount功能,并将结果实时写入redis,这里使用了第三方依赖flink-connector-redis_2.11,该依赖提供了RedisSink可以直接使用,具体代码如下:

代码

首先定义数据源处理实现类LineSplitter,该类将一行数据分词,输出<单词,1>元祖

package com.jike.flink.examples.redis;

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector; public class LineSplitter implements FlatMapFunction<String, Tuple2<String,Integer>> {
public void flatMap(String s, Collector<Tuple2<String, Integer>> collector) throws Exception {
String[] tokens = s.toLowerCase().split("\\W+");
for(String token : tokens){
if(token.length() > 0){
collector.collect(new Tuple2<String,Integer>(token,1));
}
}
}
}

然后定义数据写入Redis的配置类,这里面将统计后的所有信息词频写入一个哈希表,哈希表的key为"flink",作为测试使用,哈希表中每个元素key为单词,value为词频

package com.jike.flink.examples.redis;

import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommand;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommandDescription;
import org.apache.flink.streaming.connectors.redis.common.mapper.RedisMapper; public class SinkRedisMapper implements RedisMapper<Tuple2<String,Integer>> {
@Override
public RedisCommandDescription getCommandDescription() {
//hset
return new RedisCommandDescription(RedisCommand.HSET,"flink");
} @Override
public String getKeyFromData(Tuple2<String, Integer> stringIntegerTuple2) {
return stringIntegerTuple2.f0;
} @Override
public String getValueFromData(Tuple2<String, Integer> stringIntegerTuple2) {
return stringIntegerTuple2.f1.toString();
}
}

最后编写主程序类,该类中使用了socketTextStream数据源,通过前面定义LineSplitter完成解析,然后根据单词进行分组统计,最后写入redis


package com.jike.flink.examples.redis; import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.redis.RedisSink;
import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig; public class Sink2Redis {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment executionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment();
DataStreamSource<String> dataStreamSource = executionEnvironment.socketTextStream("实际IP",12345);
DataStream<Tuple2<String,Integer>> counts = dataStreamSource.flatMap(new LineSplitter()).keyBy(new KeySelector<Tuple2<String, Integer>, String>() {
public String getKey(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {
return stringIntegerTuple2.f0;
}
}).sum(1);
//控制台打印
counts.print().setParallelism(1);
//定义redis服务器信息
FlinkJedisPoolConfig conf = new FlinkJedisPoolConfig.Builder().setHost("redis服务器ip").setPort(redis服务端口).setPassword("redis服务密码").build();
counts.addSink(new RedisSink<>(conf,new SinkRedisMapper()));
executionEnvironment.execute();
}
}

运行效果

通过nc -l 12345,命令模拟数据源,并输入一些数据

IDEA中查看打印记录

查看redis

可以发现数据已写入redis

总结

flink-connector-redis_2.11中提供了RedisSink类,该类实现了RichSinkFunction,可以直接使用,如果有特殊需求,可以自定义Sink类,继承RichSinkFunction,实现特殊处理。flink-connector-redis_2.11的源码比较简洁,下一篇打算分析学习下。

Flink读写Redis(一)-写入Redis的更多相关文章

  1. Flink读写Redis(三)-读取redis数据

    自定义flink的RedisSource,实现从redis中读取数据,这里借鉴了flink-connector-redis_2.11的实现逻辑,实现对redis读取的逻辑封装,flink-connec ...

  2. Flink读写Redis(二)-flink-redis-connector代码学习

    源码结构 RedisSink package org.apache.flink.streaming.connectors.redis; import org.apache.flink.configur ...

  3. Redis学习笔记~Redis主从服务器,读写分离

    回到目录 Redis这个Nosql的存储系统一般会被部署到linux系统中,我们可以把它当成是一个数据服务器,对于并发理大时,我们会使用多台服务器充当Redis服务器,这时,各个Redis之间也是分布 ...

  4. redis作为缓存场景使用,内存耗尽时,突然出现大量的逐出,在这个逐出的过程中阻塞正常的读写请求,导致 redis 短时间不可用

    redis 突然大量逐出导致读写请求block   内容目录: 现象 背景 原因 解决方案 ref 现象 redis作为缓存场景使用,内存耗尽时,突然出现大量的逐出,在这个逐出的过程中阻塞正常的读写请 ...

  5. flink04 -----1 kafkaSource 2. kafkaSource的偏移量的存储位置 3 将kafka中的数据写入redis中去 4 将kafka中的数据写入mysql中去

    1. kafkaSource 见官方文档 2. kafkaSource的偏移量的存储位置 默认存在kafka的特殊topic中,但也可以设置参数让其不存在kafka的特殊topic中   3   将k ...

  6. 批量写入redis

    批量写入redis key := GetSeriesKey(series.Id) idNames = append(idNames, key, series.Name) == { err = Mset ...

  7. ELKStack入门篇(三)之logstash收集日志写入redis

    1.部署Redis 1.1.下载redis [root@linux-node2 ~]# wget http://download.redis.io/releases/redis-4.0.6.tar.g ...

  8. ELK之logstash收集日志写入redis及读取redis

    logstash->redis->logstash->elasticsearch 1.安装部署redis cd /usr/local/src wget http://download ...

  9. Redis原子性写入HASH结构数据并设置过期时间

    Redis中提供了原子性命令SETEX或SET来写入STRING类型数据并设置Key的过期时间: > SET key value EX NX ok > SETEX key value ok ...

随机推荐

  1. docker搭建渗透环境并进行渗透测试

    目录 docker简介 docker的安装 docker.centos7.windows10(博主宿主机系统)之间相互通信 -docker容器中下载weblogic12c(可以略过不看) docker ...

  2. 常用命令合集『Postgres、Redis、Docker等等』每周更新,建议收藏备用

    Command CMD POSTGRES 进入数据库命令行 psql -U 用户名 -d 数据库名 psql -U example -d exampledb 导出数据库 pg_dump -U 用户名 ...

  3. celery配置与基本使用

    目录 1.celery配置与基本使用 1.1 安装celery 2.测试celery 2.1启动celery 1.celery配置与基本使用 1.1 安装celery # celery_task/ma ...

  4. svn学习与应用

    先来认识下svn svn是之前公司一直在用的代码版本控制系统,采用了分支管理系统.顾名思义,可以对代码的版本做系统化管理.通俗讲就是可用于多个人共同开发同一个项目,实现共用资源的目的. 开发同学使用s ...

  5. 蓝桥杯——四数平方(2016JavaB第7题)

    四数平方(16JavaB7) 四平方和定理,又称为拉格朗日定理: 每个正整数都可以表示为至多4个正整数的平方和. 如果把0包括进去,就正好可以表示为4个数的平方和. 比如: 5 = 0^2 + 0^2 ...

  6. C语言项目(一):学生信息管理系统

    实现方式:链表 结构定义 1 typedef struct MyStu MyStudent; 2 typedef struct node Node; 3 typedef Node *pNode; 4 ...

  7. Android动画系列之属性动画

    原文首发于微信公众号:jzman-blog,欢迎关注交流! 属性动画相较帧动画和补间动画更强大,帧动画和补间动画只能应用于 View 及其子类,而属性动画可以修改任何对象的属性值,属性值可在指定的一段 ...

  8. LeetCode 010 Regular Expression Matching

    题目描述:Regular Expression Matching Implement regular expression matching with support for '.' and '*' ...

  9. JVM(四)-虚拟机对象

    概述: 上一篇文章,介绍了虚拟机类加载的过程,那么类加载好之后,虚拟机下一步该干什么呢.我们知道java是面向对象的编程语言,所以对象可以说是java'的灵魂,这篇文章我们就来介绍 虚拟机是如何创建对 ...

  10. 使用Verilog搭建一个单周期CPU

    使用Verilog搭建一个单周期CPU 搭建篇 总体结构 其实跟使用logisim搭建CPU基本一致,甚至更简单,因为完全可以照着logisim的电路图来写,各个模块和模块间的连接在logisim中非 ...