[日常摸鱼]pojKaka's Matrix Travels-拆点+最大费最大流
方格取数的升级版,每个格子最多取一次。
$k=1$的话就是个普及组的dp题,$k=2$就是在之前的基础上多加两维。
然而现在$k$太大了当然就不dp啦
对于$k=1$的情况我们还可以把$(i,j)$向$(i+1,j),(i,j+1)$连边然后答案就是跑最长路,而对于更大的情况我们的瓶颈在于直接跑最长路不能限制每个点只取一次。
对于点来说没有什么好的方法我们就把问题转移到边上:把每个点拆成一条边。具体的说就是把一个点拆成两个点,把点权变成边权,而我们又要限制这样子的每条边最多走一次,这里就有点费用流的感觉了(雾)。
所以我们可以这样建图:把点$i$拆成$i$和$i'$,不妨令$i$为入点$i'$为出点,从入点到出点连两条边:一条容量为1,费用为点权$c$,另一条容量为$k-1$,费用为0。
原图里的点的出点再向能够直接到达的点的入点连一条容量为$k$,费用为0的边。
这样每次bfs的时候只要成功都会走出一条完整的路径,路径上的费用被算进去之后这条路也就不会再走了(因为有费用的只有容量为1的嘛),于是也就保证了只会取一次并且一定是第一次经过的时候被取走。
以起点的入点为源点,以终点的出点为汇点跑最大费用最大流得到的就是答案啦
#include<cstdio>
#include<queue>
#include<cstring>
#define rep(i,n) for(register int i=1;i<=n;i++)
#define REP(i,a,b) for(reigster int i=a;i<=b;i++)
using namespace std;
const int N=5005;
const int M=20005;
const int INF=(~0u>>1);
struct edge
{
int to,nxt,w,c;
edge(int to=0,int nxt=0,int w=0,int c=0):to(to),nxt(nxt),w(w),c(c){}
}edges[M<<1];
int n,k,s,t,ans,cnt;
int head[M<<1],infc[N],vis[N],d[N],pre[N];
queue<int>q; inline void addEdge(int u,int v,int w,int c)
{
edges[++cnt]=edge(v,head[u],w,c);head[u]=cnt;
edges[++cnt]=edge(u,head[v],0,-c);head[v]=cnt;
}
inline int get_num(int i,int j,int p)
{
return (i-1)*n+j+n*n*p;
}
#define cur edges[i].to
inline bool spfa()
{
memset(vis,0,sizeof vis);
rep(i,t)d[i]=-INF;q.push(s);
d[s]=0;infc[s]=INF;vis[s]=1;
while(!q.empty())
{
int x=q.front();q.pop();vis[x]=0;
for(register int i=head[x];i;i=edges[i].nxt)if(edges[i].w&&d[cur]<d[x]+edges[i].c)
{
d[cur]=d[x]+edges[i].c;
pre[cur]=i;infc[cur]=min(infc[x],edges[i].w);
if(!vis[cur])vis[cur]=1,q.push(cur);
}
}
if(d[t]==-INF)return 0;
return 1;
}
#undef cur
inline void updata()
{ int tmp=t;
while(tmp!=s)
{
int i=pre[tmp];
edges[i].w-=infc[t];
edges[i^1].w+=infc[t];
tmp=edges[i^1].to;
}
ans+=d[t];
}
int main()
{
scanf("%d%d",&n,&k);
s=1;t=2*n*n;cnt=1;
rep(i,n)rep(j,n)
{
int x;scanf("%d",&x);
addEdge(get_num(i,j,0),get_num(i,j,1),1,x);
addEdge(get_num(i,j,0),get_num(i,j,1),k-1,0);
if(i<n)addEdge(get_num(i,j,1),get_num(i+1,j,0),k,0);
if(j<n)addEdge(get_num(i,j,1),get_num(i,j+1,0),k,0);
}
while(spfa())updata();
printf("%d",ans);
return 0;
}
[日常摸鱼]pojKaka's Matrix Travels-拆点+最大费最大流的更多相关文章
- [日常摸鱼]bzoj2724蒲公英-分块
区间众数经典题~ http://begin.lydsy.com/JudgeOnline/problem.php?id=4839这里可以提交~ 题意大概就是没有修改的询问区间众数,如果有一样的输出最小的 ...
- [日常摸鱼]bzoj2875[NOI2012]随机数生成器-矩阵快速幂
好裸的矩阵快速幂-然而我一开始居然构造不出矩阵- 平常两个的情况都是拿相邻两项放在矩阵里拿去递推的-然后我就一直构造不出来-其实把矩阵下面弄成1就好了啊orz #include<cstdio&g ...
- [日常摸鱼]HDU2157 How many ways??
hhh我又开始水题目了 题意:给一张有向图,多次询问一个点到另一个点刚好走$k$步的方案数取模,点数很小 每个$a,b,k$的询问直接把邻接矩阵$map$自乘$k$次后$map[a][b]$就是答案了 ...
- [日常摸鱼]poj2778 DNA Sequence
这题太神啦 题意:求长度为$n$的不包含给定DNA序列的DNA序列个数,给定的不超过10个 构建出Trie图,用$danger[i]$来表示不能走到$i$,对于DNA序列结尾的结点$danger$设为 ...
- [日常摸鱼]bzoj1444 [JSOI2009]有趣的游戏——AC自动机+矩阵
今天学校跳蚤市场摆摊聚众吸毒打call,东西卖了一百多好开心_(:з」∠)_ (然后大家中午就去吃了一顿好的x) 下午听演讲然后现在来填坑orz(其实是昨晚的坑) 题目:bzoj1444 先用字符串构 ...
- Hash 日常摸鱼笔记
本篇文章是Hash在信息学竞赛中的应用的学习笔记,分多次更新(已经有很多坑了) 一维递推 首先是Rabin-Karp,对于一个长度为\(m\)的串\(S\) \(f(S)=\sum_{i=1}^{m} ...
- [日常摸鱼]HDU1724 Ellipse-自适应Simpson法
模板题~ QAQ话说Simpson法的原理我还是不太懂-如果有懂的dalao麻烦告诉我~ 题意:每次给一个椭圆的标准方程,求夹在直线$x=l$和$x=r$之间的面积 Simpson法 (好像有时候也被 ...
- [日常摸鱼]bzoj1257余数之和
题意:输入$k,n$,求$\sum_{i=1}^n k \mod i$ $k \mod i=k-i*\lfloor \frac{k}{i} \rfloor $,$n$个$k$直接求和,后面那个东西像比 ...
- [日常摸鱼]bzoj1001狼抓兔子-最大流最小割
题意就是求最小割- 然后我们有这么一个定理(最大流-最小割定理 ): 任何一个网络图的最小割中边的容量之和等于图的最大流. (下面直接简称为最大流和最小割) 证明: 如果最大流>最小割,那把这些 ...
随机推荐
- 面试阿里,字节,美团必看的Spring的Bean管理详解
IOC容器 工厂只负责创建对象,而Spring当然不仅仅是一个对象工厂,其核心是一个对象容器,其具备控制反转的能力,所以也称为IOC容器. 帮助我们存放对象,并且管理对象,包括:创建.销毁.装配,这样 ...
- MathType如何对齐公式
作为强大的公式编辑器,MathType为我们的学习.工作带来了极大的便利.比如在写论文时,有了它,就可以轻松就把论文里的公式码完:老师在编写试卷时,利用它,可以快速编写出一份试卷.那么在编写公式时,也 ...
- PDF编辑:pdfFactory文本备注功能详解
除了word的doc文件外,PDF也是我们经常接触到的文件格式,经常需要在pdf文件上进行编辑与修改,或者给内容做提示和备注. 文件的文本备注功能可以用pdfFactory来进行,编辑打印PDF一条龙 ...
- 基于Vue、Springboot网站实现第三方登录之QQ登录,以及邮件发送
基于Vue.Springboot实现第三方登录之QQ登录 前言 一.前提(准备) 二.QQ登录实现 1.前端 2.后端 1.application.yml 和工具类QQHttpClient 2.QQL ...
- Django 的反向解析与有无名分组
无名分组(将加括号的正则表达式匹配到的内容当做位置参数自动传递给对应的视图函数) url(r'^test/(\d+)/',views.test), # 匹配一个或多个数字 def test(reque ...
- 基于CefSharp开发(五)浏览器菜单样式
一.菜单分析 上图为Edge浏览器现有的菜单内容,菜单中即有子菜单也有组合菜单. 本章节将开发浏览器菜单样式,菜单部分功能将后期进行处理. 二.创建菜单用户控件 新建用户控件命名为WebMenuUc, ...
- CSS聚光灯文字(无图片)
Welcome to my admin site! h1 { font-size: 70px; color: rgba(255, 255, 255, 1); padding: 0; margin: 0 ...
- Python中容器指的是什么?
容器:容器是一种把多个元素组织在一起的数据结构,容器中的元素可以逐个地迭代获取,可以用in, not in关键字判断元素是否包含在容器中. 容器是一种可以包含其他类型对象(如列表.元组.字典等)作为元 ...
- PyQt(Python+Qt)学习随笔:Qt Designer中QAbstractButton派生按钮部件的icon属性和iconSize属性
icon属性 icon属性保存按钮上展示的图标,图标的缺省大小由图形界面的样式决定,但可以通过 iconSize 属性进行调整. 图标的几种子属性状态的含义与QWidget的windowIcon属性相 ...
- 【Docker】 CentOS7 安装 Docker 及其使用方法 ( 一 )
系列目录: [Docker] CentOS7 安装 Docker 及其使用方法 ( 一 ) [Docker] 使用Docker 在阿里云 Centos7 部署 MySQL 和 Redis (二) [D ...