本文整理自腾讯云云原生产品团队的专家产品经理韩沛在 Techo 开发者大会云原生专题的分享内容——Kubernetes 混部与弹性容器。本次分享主要分为三部分:基于 K8s 的应用混部、提升应用混部效果的关键、弹性容器对混部集群的价值。

讨论 K8s 的混部这个话题,是因为我们发现,在业务 K8s 化后,混部和资源利用率对运维团队是一个绕不过去的话题,这个话题也一直是我们腾讯云原生团队一直关注的重点。

首先,毋庸置疑,Kubernetes 的系统能力和它作为引擎推动的云原生生态影响力都非常强大,助力了很多先进理念在生产环境的大规模实用化,包括微服务、自动扩缩容、CICD、服务网格、应用混部等。

这其中有些部分在现有 K8s 的系统中即可以得到很好的支持,比如微服务、自动扩缩容。有些则依赖 K8s 与生态能力的集成,比如 CICD、服务网格,就依赖 K8s 和一些社区 DevOps 、servicemesh 系统的打通,不过它们中的大部分在生态系统中已经得到了很好的集成支持,通常不需要我们再做太多的工作。

但我们今天的话题——K8s 架构下的应用混部,则是一个较特殊的领域,一方面大部分的企业基础设施升级为云原生架构后,通常会天然支持一些混部能力,从而带来一些显而易见的收益,比如资源利用率的提升。可以说容器化和 K8s 为整个行业进入应用的大规模混部打开了一扇窗。而另一方面,但当我们真正进这个领域时,即使站在 K8s 的肩膀上,混部依然是对企业架构能力的一个巨大挑战。

在容器化之前,在物理或虚拟服务器上部署应用,资源利用率通常很低,一是很多应用本身具有潮汐现象,二是服务器大部分情况只能部署一个应用,而非 K8s 那样在一个节点上部署多个。但容器化托管到 K8s 集群后,很多时候,我们会发现资源利用率还是不高。

上图,是一个 K8s 集群线上业务的典型资源曲线,最上面的蓝线是容器资源 request 申请值,红色线是容器真实运行的曲线值,我们看到 request 和 usage 之间有很大 gap,这是因为对容器资源的评估不可能完全精准,另外,波峰和波谷也有差别,最终导致平均利用率不高。

那是不是 K8s 不行呢?当然不是,K8s 在助力我们进行应用混部上虽然还没有解决所有的问题,但绝对是最佳的可选平台之一。

优秀的系统能力使 K8s 天然适合进行混部,包括在线服务的混部和现在业内火热的在离线混部。腾讯内部也通过 K8s 化,在很多场景显著提升了资源利用率。

像腾讯这种规模的计算体量,除了大家熟知明星应用,还有海量的算力在进行服务支撑、离线计算等。通过把这部分应用以及一些潮汐现象明显的产品服务进行混部,资源利用率的提升非常显著。

在业内,Google 基于 K8s 的前身 Borg 系统,从 2015 年至今已发布了多篇与混部相关的论文。于去年发布一篇论文中,可以看到 Borg 支持的混部能力已经逼近 60% 的 CPU 资源利用率。对比其 2011 年和 2019 年的混部效果,可以看到,除了利用率的提升,最显著的变化,一是应用分级粒度更细了,二是各级别的应用运行更加平稳了。尤其是第二点,明显感觉到 Borg 在混部的支撑层面,如调度增强、资源预测回收、任务避让等机制上的进步。

提升混部效果的关键是什么?首先,我们需要明确两个问题。

第一个问题,混部的目的是什么?混部的目的是在保证在线业务服务质量的前提下,实现闲置资源复用,提高整体资源利用率。保证在线业务服务质量是前提,使之不受影响,没有这个前提,利用率提升再高也毫无意义。

第二个问题,什么样的应用适合混部?适合混部的应用有两类:一类是算力要求很高的周期性应用,通常是一些离线计算任务。一类是容易造成资源浪费的应用,通常是一些长时间运行的、具备潮汐现象的在线服务。但要注意,有些在线服务会对某些资源有较高的敏感性,这类服务是对混部系统的最大挑战,因为稍有不慎就会偏离混部的目的,影响了在线服务质量,得不偿失。

在确定了这两个问题之后,我们来看下混部系统需要有哪些机制。通常分为三层:

一是对混部应用进行特征画像、定级以及分配资源配额的应用管理层。这一层定义应用的级别,混部的时机,以及通过配额保证资源分配不失控。

二是对混部集群进行调度、隔离、资源复用和避让的核心系统。这一层是混部的核心,基本决定了我们的集群能达到什么样的混部效果。

最后,还需要一整套适配的自动化运营系统。

混部的基本原理是对闲置资源的再分配。通常,闲置资源有两个来源。集群内会有碎片资源,这是资源分配颗粒度问题导致的,这些碎片资源可以分配给颗粒度更小的应用使用。另外,在线服务申请的资源通常会大于实际使用的资源,配合应用画像,预测出这部分服务的波峰波谷,可以将这部分闲置资源分配给其他应用。

基于这个背景,引申出混部最核心的两个子模块:资源复用和任务避让。顾名思义,资源复用就是把上述两种闲置资源通过预测、回收的机制,实时再分配给混部应用使用。而任务避让,就是检测核心在线服务是否收到了混部的影响。一旦发生干扰,马上触发冲突处理机制,进行压制和再调度等操作。

可以这么说,这两个模块决定了混部的效果和可混部的应用范围。除了理论上的问题,还有一些重要的点必须考虑:为了保证混部效果,频繁对集群实时情况进行预测和资源回收,对集群本身带来了额外的负担,如何在尽可能资源复用和尽量降低资源预测回收频率之间找到平衡?还有,为了保证在线服务的质量,任务回避通常不可避免,这就降低了次优先级应用的执行效率,高负载时可能导致任务的频繁重试和堆积,进而可能拖累整个集群。

为了解决这些问题,腾讯云云原生团队做了一直在思考和尝试,目前较先进的一种方式是通过 serverless 容器即弹性容器,来拓展整个混部集群的资源池。

弹性容器是腾讯云推出的无服务器容器产品。它支持一种能力,类似开源virtual kubelet 的方式,但又相比开源方案能力更强、更适合生产。它支持在一个既有 K8s 集群中通过部署虚拟节点的方式把 pod 调度为弹性容器。调度为弹性容器的 pod 与原集群中的其他 pod 网络互通,如果关联了service ,service间也可互通。

所以无论是已有 workload 的扩容、还是新的 workload,都可以以一种平滑的方式进行调度。且该能力对集群不会产生额外的维护成本。

这个能力对混部的核心价值在于:它无成本的扩展了集群资源池,降低了资源冲突的风险,提升了混部集群的冗余度和适用性。另外,在检测到资源不足之类的冲突时,在很多场景可以不中止次优先级任务,而是视情况扩容或再调度,在弹性容器上继续运行任务,秉持尽量不打断已启动任务的原则,提升整个系统的效率。

这类混部集群的几个典型场景:

1、低负载时进行任务填充,运行更多任务,提升集群资源利用率。

2、万一发生了在线服务干扰,封锁相关节点,驱逐次优先级任务到虚拟节点,让其继续运行。

3、发生集群资源紧张时,封锁相关节点,视情况,如果是可压缩资源紧张,比如 CPU、IO 等,则压制次优先级任务;如果是不可压缩资源紧张,如内存、存储等,则驱逐次优先级任务到虚拟节点;在此情况下所有新增 Pod 均调度到虚拟节点,不再对集群固定资源增加任何压力,避免发生雪崩。

这3个例子还不能覆盖所有的混部场景,但已经提升了原生 K8s 集群混部的适用范围。我们也在持续探索其他的路径来做到更好。也欢迎有想法的朋友下来一起探讨和分享。

最后,混部是一个持续优化的过程。各家大厂都对混部投入了相当长的时间研究,才开始放量铺开。随着技术的发展,K8s 混部的效果会越来越好,适用的场景也会越来越多。谢谢大家!

Kubernetes 混部与弹性容器(本文) PPT 下载方式,请在公众号腾讯云原生后台回复关键字“EKS”获取。

【腾讯云原生】云说新品、云研新术、云游新活、云赏资讯,扫码关注同名公众号,及时获取更多干货!!

Serverless 如何应对 K8s 在离线场景下的资源供给诉求的更多相关文章

  1. 难道主键除了自增就是GUID?支持k8s等分布式场景下的id生成器了解下

    背景 主键(Primary Key),用于唯一标识表中的每一条数据.所以,一个合格的主键的最基本要求应该是唯一性. 那怎么保证唯一呢?相信绝大部分开发者在刚入行的时候选择的都是数据库的自增id,因为这 ...

  2. 超大规模商用 K8s 场景下,阿里巴巴如何动态解决容器资源的按需分配问题?

    作者 | 张晓宇(衷源)  阿里云容器平台技术专家 关注『阿里巴巴云原生』公众号,回复关键词"1010",可获取本文 PPT. 导读:资源利用率一直是很多平台管理和研发人员关心的话 ...

  3. 从零入门 Serverless | SAE 场景下,应用流量的负载均衡及路由策略配置实践

    作者 | 落语 阿里云云原生技术团队 本文整理自<Serverless 技术公开课>,关注"Serverless"公众号,回复"入门",即可获取 S ...

  4. 从 ClickHouse 到 ByteHouse:实时数据分析场景下的优化实践

    本文来自火山引擎公众号,原文发布于2021-09-06. 近日,字节跳动旗下的企业级技术服务平台火山引擎正式对外发布「ByteHouse」,作为 ClickHouse 企业版,解决开源技术上手难 &a ...

  5. 浅谈Vue不同场景下组件间的数据交流

    浅谈Vue不同场景下组件间的数据“交流”   Vue的官方文档可以说是很详细了.在我看来,它和react等其他框架文档一样,讲述的方式的更多的是“方法论”,而不是“场景论”,这也就导致了:我们在阅读完 ...

  6. 亿级流量场景下,大型架构设计实现【2】---storm篇

    承接之前的博:亿级流量场景下,大型缓存架构设计实现 续写本博客: ****************** start: 接下来,我们是要讲解商品详情页缓存架构,缓存预热和解决方案,缓存预热可能导致整个系 ...

  7. Entity Framework入门教程(9)---离线场景附加实体图集到上下文

    附加离线实体图集到上下文 这节主要内容是通过不同的方法将离线实体附加到上下文中. 在离线场景中,保存一个实体要略微困难一些.当我们保存一个离线的实体图集或一个单独的离线实体时,我们需要做两件事.首先, ...

  8. 【Vue】浅谈Vue不同场景下组件间的数据交流

    浅谈Vue不同场景下组件间的数据“交流”   Vue的官方文档可以说是很详细了.在我看来,它和react等其他框架文档一样,讲述的方式的更多的是“方法论”,而不是“场景论”,这也就导致了:我们在阅读完 ...

  9. 美团在O2O场景下的广告营销

    美团作为中国最大的在线本地生活服务平台,覆盖了餐饮.酒店.旅行.休闲娱乐.外卖配送等方方面面生活场景,连接了数亿用户和数百万商户.如何帮助本地商户开展在线营销,使得他们能快速有效地触达目标用户群体提升 ...

随机推荐

  1. .net core 和 WPF 开发升讯威在线客服与营销系统:背景和产品介绍

    本系列文章详细介绍使用 .net core 和 WPF 开发 升讯威在线客服与营销系统 的过程.本产品已经成熟稳定并投入商用. 在线演示环境:https://kf-m.shengxunwei.com ...

  2. SpringBoot + Layui + JustAuth +Mybatis-plus实现可第三方登录的简单后台管理系统

    1. 简介   在之前博客:SpringBoot基于JustAuth实现第三方授权登录 和 SpringBoot + Layui +Mybatis-plus实现简单后台管理系统(内置安全过滤器)上改造 ...

  3. C++回调函数的理解与使用

    一.回调函数就是一个通过函数指针调用的函数.如果你把函数的指针(地址)作为参数传递给另一个函数,当这个指针被用来调用其所指向的函数时,我们就说这是回调函数.回调函数不是由该函数的实现方直接调用,而是在 ...

  4. matplotlib的学11-image图片

    import matplotlib.pyplot as plt import numpy as np ''' 这一节我们讲解怎样在matplotlib中打印出图像. 这里我们打印出的是纯粹的数字,而非 ...

  5. Kubernetes K8S之Helm部署、使用与示例

    Kubernetes K8S之Helm部署.使用.常见操作与示例 主机配置规划 服务器名称(hostname) 系统版本 配置 内网IP 外网IP(模拟) k8s-master CentOS7.7 2 ...

  6. 群晖DS218+部署GitLab

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  7. Python:大神用的贼溜的实用技巧分享

    整理字符串输入 整理用户输入的问题在编程过程中极为常见.通常情况下,将字符转换为小写或大写就够了,有时你可以使用正则表达式模块「Regex」完成这项工作.但是如果问题很复杂,可能有更好的方法来解决: ...

  8. python多元回归于调用excel文件

    import xlrd from numpy.linalg import inv import numpy as np data = xlrd.open_workbook(u'C:\\Users\\x ...

  9. Python将word文档批量转PDF

    前面有一篇<Python批量创建word文档(2)- 加图片和表格>的文章,利用这篇文章创建的word文档来批量转PDF文档.代码: 1 ''' 2 #python批量将word文档转换成 ...

  10. Git 使用中遇见的各种问题及解决办法

    一.修改提交代码的用户名以及提交邮箱,(推荐使用方法2,一劳永逸) 方法1(修改.git/config文件): step1:进入工程.git文件夹 step2:vim config step3:末行添 ...