• 题意:给你一个\(n\)x\(m\)的矩阵,需要在这些矩阵中涂色,每个格子可以涂成黑色或者白色,一个格子四周最多只能有\(2\)个和它颜色相同的,问最多有多少种涂色方案.

  • 题解:首先我们考虑一维的情况,一个格子的方案数是\(2\),两个格子的方案数是\(4\),我们记\(f[1]=2\),\(f[2]=4\),然后我们考虑三个格子的情况,假如我们最后两个格子涂成一样的颜色,那么情况数就是\(f[1]\),若最后两个两个格子的颜色不一样,那么我们可以看成在\(f[2]\)的基础上涂第三个格子,这样涂的话是固定的,即方案数为\(f[2]\),所以可以推出\(f[3]=f[1]+f[2]\),进而求出递推式:\(f[i]=f[i-1]+f[i-2]\).

    我们可以先看第一行的情况,不难发现,假如这一行出现两个连续的颜色时,整个图就确定了,而且这种情况下的第一列一定是黑白相间的,假如没有出现两个连续的颜色,即\(oxoxoxox\)和\(xoxoxoxo\)这两个特殊情况,我们是不能确定下面行的情况的,这时我们就可以将这两个情况单独拿出来,去看第一列的情况,在计算这一列的时候,我们必须要保持第一行是\(oxoxoxoxo\)或\(xoxoxoxoxo\),就像之前说的,假如出现两个连续的颜色时,第一行的颜色一定是黑白相间的,但是当第一列出现\(oxoxoxox\)和\(xoxoxoxo\)这样的情况时,第一行并不一定是黑白相间的,而不是黑白相间的情况我们在\(f[n]\)中已经计算过了,所以方案数为\(f[m]-2\),所以答案就是\(f[n]+f[m]-2\).

  • 代码:

#include <bits/stdc++.h>
#define ll long long
#define fi first
#define se second
#define pb push_back
#define me memset
#define rep(a,b,c) for(int a=b;a<=c;++a)
#define per(a,b,c) for(int a=b;a>=c;--a)
const int N = 1e6 + 10;
const int mod = 1e9 + 7;
const int INF = 0x3f3f3f3f;
using namespace std;
typedef pair<int,int> PII;
typedef pair<ll,ll> PLL;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b) {return a/gcd(a,b)*b;} int n,m;
ll f[N]; int main() {
ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
f[1]=2,f[2]=4; cin>>n>>m; rep(i,3,max(n,m)) f[i]=f[i-1]%mod+f[i-2]%mod; cout<<(f[n]+f[m]-2)%mod<<'\n'; return 0;
}

Codeforces Round #594 (Div. 2) C. Ivan the Fool and the Probability Theory (思维,递推)的更多相关文章

  1. Codeforces Round #594 (Div. 2) - C. Ivan the Fool and the Probability Theory(思维)

    题意:给n*m的网格涂黑白两种颜色,保证每个格子上下左右的四个格子中最多只有一个格子与自己颜色相同,问有多少种涂法?结果$mod1000000007$ 思路:先只考虑一行有多少种涂法 $dp[i][0 ...

  2. Codeforces Round #594 (Div. 1) A. Ivan the Fool and the Probability Theory 动态规划

    A. Ivan the Fool and the Probability Theory Recently Ivan the Fool decided to become smarter and stu ...

  3. Codeforces Round #594 (Div. 2)

    传送门 C. Ivan the Fool and the Probability Theory 题意: 给出一个\(n*m\)的方格,现在要给方格中的元素黑白染色,要求任一颜色最多有一个颜色相同的格子 ...

  4. Codeforces Round #594 (Div. 1)

    Preface 这场CF真是细节多的爆炸,B,C,F都是大细节题,每道题都写了好久的说 CSP前的打的最后一场比赛了吧,瞬间凉意满满 希望CSP可以狗住冬令营啊(再狗不住真没了) A. Ivan th ...

  5. Codeforces Round #539 (Div. 2) - C. Sasha and a Bit of Relax(思维题)

    Problem   Codeforces Round #539 (Div. 2) - C. Sasha and a Bit of Relax Time Limit: 2000 mSec Problem ...

  6. Codeforces Round #716 (Div. 2), problem: (B) AND 0, Sum Big位运算思维

    & -- 位运算之一,有0则0 原题链接 Problem - 1514B - Codeforces 题目 Example input 2 2 2 100000 20 output 4 2267 ...

  7. Codeforces Round #594 (Div. 1) Ivan the Fool and the Probability Theory

    题意:给你一个NxM的图,让你求有多少符合 “一个格子最多只有一个同颜色邻居”的图? 题解:首先我们可以分析一维,很容易就可以知道这是一个斐波那契计数 因为dp[1][m]可以是dp[1][m-1]添 ...

  8. Codeforces Round #594 (Div. 1) D. Catowice City 图论

    D. Catowice City In the Catowice city next weekend the cat contest will be held. However, the jury m ...

  9. Codeforces Round #594 (Div. 1) C. Queue in the Train 模拟

    C. Queue in the Train There are

随机推荐

  1. LeetCode 二分查找模板 III

    模板 #3: int binarySearch(vector<int>& nums, int target){ if (nums.size() == 0) return -1; i ...

  2. 详解 TCP的三次握手四次挥手

    本文转载来自https://blog.csdn.net/qzcsu/article/details/72861891 背景描述 通过上一篇中网络模型中的IP层的介绍,我们知道网络层,可以实现两个主机之 ...

  3. kubernetes机理之调度器以及控制器

    一 了解调度器 1.1  调度器是如何将一个pod调度到节点上的 我们都已然知晓了,API服务器不会主动的去创建pod,只是拉起系统组件,这些组件订阅资源状态的通知,之后创建相应的资源,而负责调度po ...

  4. kubernets之从应用访问pod元数据以及其他资源

    一  downwardAPI的应用 1.1  前面我们介绍了如何通过configmap以及secret将配置传入到pod的容器中,但是传递的这些都是预先能够安排和只晓得,对于那些只有当pod创建起来之 ...

  5. 查看pod日志无法查看的解决方式

    查看pod日志 [root@k8s-master1 ~]# kubectl logs nginx-7cdbd8cdc9-2qrcw Error from server (Forbidden): For ...

  6. 单线程的as-if-serial语义

    单线程的as-if-serial语义 关于指令重排序有个问题不明白的一个问题 int a = 2; int c = 1 + a; float b = 3f / 2f; 举个栗子,从CPU的设计者以及编 ...

  7. 1V升压5V和1.5V升压5V的集成电路芯片

    1.5V和1V输入,要升压输出5V的集成电路芯片合适? 干电池标准电压是1.5V,放电电压后面在0.9V-1V左右,如果要选用干电池1.5V升压到5V的合适的芯片,需要满足低压1V或者0.9V更好的低 ...

  8. ensure that both new and old access_token values are available within five minutes, so that third-party services are smoothly transitioned.

    WeChat public doc https://developers.weixin.qq.com/doc/offiaccount/en/Basic_Information/Get_access_t ...

  9. 极光推送的设备唯一性标识 RegistrationID

    极光推送的设备唯一性标识 RegistrationID 极光推送的设备唯一性标识 RegistrationID | 极光博客 https://blog.jiguang.cn/registrationi ...

  10. http发送

    package cn.com.yitong.wdph.util; import java.io.BufferedReader;import java.io.InputStream;import jav ...