zoj3545Rescue the Rabbit (AC自动机+状压dp+滚动数组)
Time Limit: 10 Seconds Memory Limit: 65536 KB
Dr. X is a biologist, who likes rabbits very much and can do everything for them. 2012 is coming, and Dr. X wants to take some rabbits to Noah's Ark, or there are no rabbits any more.
A rabbit's genes can be expressed as a string whose length is l (1 ≤ l ≤ 100) containing only 'A', 'G', 'T', 'C'. There is no doubt that Dr. X had a in-depth research on the rabbits'
genes. He found that if a rabbit gene contained a particular gene segment, we could consider it as a good rabbit, or sometimes a bad rabbit. And we use a value W to measure this index.
We can make a example, if a rabbit has gene segment "ATG", its W would plus 4; and if has gene segment "TGC", its W plus -3. So if a rabbit's gene string is "ATGC",
its W is 1 due to ATGC contains both "ATG"(+4) and "TGC"(-3). And if another rabbit's gene string is "ATGATG", its W is 4 due to one gene segment can be calculate only once.
Because there are enough rabbits on Earth before 2012, so we can assume we can get any genes with different structure. Now Dr. X want to find a rabbit whose gene has highestW value.
There are so many different genes with length l, and Dr. X is not good at programming, can you help him to figure out the W value of the best rabbit.
Input
There are multiple test cases. For each case the first line is two integers n (1 ≤ n ≤ 10),l (1 ≤ l ≤ 100), indicating the number of the particular
gene segment and the length of rabbits' genes.
The next n lines each line contains a string DNAi and an integer wi (|wi| ≤ 100), indicating this gene segment and the value it can
contribute to a rabbit's W.
Output
For each test case, output an integer indicating the W value of the best rabbit. If we found this value is negative, you should output "No Rabbit after 2012!".
Sample Input
2 4
ATG 4
TGC -3 1 6
TGC 4 4 1
A -1
T -2
G -3
C -4
Sample Output
4
4
No Rabbit after 2012!
Hint
case 1:we can find a rabbit whose gene string is ATGG(4), or ATGA(4) etc.
case 2:we can find a rabbit whose gene string is TGCTGC(4), or TGCCCC(4) etc.
case 3:any gene string whose length is 1 has a negative W.
题意:给你n个模板串,每一个模板串对应一个数值,有正也有负,然你构造一个长度为m的模板串,使得模板串的价值最大,且一种模板串如果重复出现只统计一次。
思路:考虑到n<=10,所以用状压dp的思想,设状态为dp[i][j][state]表示走了i步,当前节点为j,含有的单词状态为state的最大值。但是这个状态消耗的内存太大,有100*1000*1024,所以用滚动数组(这点是看了别人的题解才发现的,果然意识不够啊..= .=),然后构造trie图,dp就行了。
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef long long ll;
#define inf 99999999
#define pi acos(-1.0)
#define maxnode 1100
int t0,t1,t2,t3;
char s[14],str[50];
int cas=0;
int dp[2][1005][1030],w[1030];
int n,m;
struct trie{
int sz,root,val[maxnode],next[maxnode][4],fail[maxnode];
int q[1111111];
void init(){
int i;
sz=root=0;
val[0]=0;
for(i=0;i<4;i++){
next[root][i]=-1;
}
}
int idx(char c){
if(c=='A')return 0;
if(c=='C')return 1;
if(c=='T')return 2;
if(c=='G')return 3;
}
void charu(char *s,int index){
int i,j,u=0;
int len=strlen(s);
for(i=0;i<len;i++){
int c=idx(s[i]);
if(next[u][c]==-1){
sz++;
val[sz]=0;
next[u][c]=sz;
u=next[u][c];
for(j=0;j<4;j++){
next[u][j]=-1;
}
}
else{
u=next[u][c];
}
}
val[u]|=(1<<index-1);
}
void build(){
int i,j;
int front,rear;
front=1;rear=0;
for(i=0;i<4;i++){
if(next[root][i]==-1 ){
next[root][i]=root;
}
else{
fail[next[root][i] ]=root;
rear++;
q[rear]=next[root][i];
}
}
while(front<=rear){
int x=q[front];
val[x]|=val[fail[x] ];
front++;
for(i=0;i<4;i++){
if(next[x][i]==-1){
next[x][i]=next[fail[x] ][i];
}
else{
fail[next[x][i] ]=next[fail[x] ][i];
rear++;
q[rear]=next[x][i];
}
}
}
}
void solve(){
int i,j,state,t,state1;
for(j=0;j<=sz;j++){
for(state=0;state<(1<<n);state++){
dp[0][j][state]=dp[1][j][state]=-inf;
}
}
int tot=0;
dp[tot][0][0]=0;
for(i=0;i<m;i++){
for(j=0;j<=sz;j++){
for(state=0;state<(1<<n);state++){
if(dp[tot][j][state]==-inf)continue;
for(t=0;t<4;t++){
state1=(state|val[next[j][t] ]);
dp[1^tot ][next[j][t] ][state1]=max(dp[1^tot ][next[j][t] ][state1],w[state1] );
}
}
}
tot=1^tot;
for(j=0;j<=sz;j++){
for(state=0;state<(1<<n);state++){
dp[1^tot][j][state]=-inf;
}
}
}
int maxx=-inf;
for(j=0;j<=sz;j++){
for(state=0;state<(1<<n);state++){
maxx=max(maxx,dp[tot][j][state]);
}
}
if(maxx<0){
printf("No Rabbit after 2012!\n");
}
else printf("%d\n",maxx);
}
}ac;
int main()
{
int i,j;
int value[20],len,state;
while(scanf("%d%d",&n,&m)!=EOF)
{
ac.init();
for(i=1;i<=n;i++){
scanf("%s%d",&s,&value[i]);
len=strlen(s);
if(len>m)continue;
ac.charu(s,i);
}
for(state=0;state<(1<<n);state++){
w[state]=0;
for(i=1;i<=n;i++){
if(state&(1<<(i-1) )){
w[state]+=value[i];
}
}
}
ac.build();
ac.solve();
}
return 0;
}
zoj3545Rescue the Rabbit (AC自动机+状压dp+滚动数组)的更多相关文章
- hdu 4057--Rescue the Rabbit(AC自动机+状压DP)
题目链接 Problem Description Dr. X is a biologist, who likes rabbits very much and can do everything for ...
- hdu 2825 aC自动机+状压dp
Wireless Password Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- BZOJ1559 [JSOI2009]密码 【AC自动机 + 状压dp】
题目链接 BZOJ1559 题解 考虑到这是一个包含子串的问题,而且子串非常少,我们考虑\(AC\)自动机上的状压\(dp\) 设\(f[i][j][s]\)表示长度为\(i\)的串,匹配到了\(AC ...
- HDU 3247 Resource Archiver(AC自动机 + 状压DP + bfs预处理)题解
题意:目标串n( <= 10)个,病毒串m( < 1000)个,问包含所有目标串无病毒串的最小长度 思路:貌似是个简单的状压DP + AC自动机,但是发现dp[1 << n][ ...
- hdu2825 Wireless Password(AC自动机+状压dp)
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission ...
- HDU 4057:Rescue the Rabbit(AC自动机+状压DP)***
http://acm.hdu.edu.cn/showproblem.php?pid=4057 题意:给出n个子串,串只包含‘A’,'C','G','T'四种字符,你现在需要构造出一个长度为l的串,如果 ...
- HDU4057 Rescue the Rabbit(AC自动机+状压DP)
题目大概是给几个DNA片段以及它们各自的权值,如果一个DNA包含某个片段那么它的价值就加上这个片段的权值,同时包含多个相同DNA片段也只加一次,问长度l的DNA可能的最大价值. 与HDU2825大同小 ...
- hdu 6086 -- Rikka with String(AC自动机 + 状压DP)
题目链接 Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, s ...
- UVALive - 4126 Password Suspects (AC自动机+状压dp)
给你m个字符串,让你构造一个字符串,包含所有的m个子串,问有多少种构造方法.如果答案不超过42,则按字典序输出所有可行解. 由于m很小,所以可以考虑状压. 首先对全部m个子串构造出AC自动机,每个节点 ...
随机推荐
- windows打包脚本出现 /bin/sh^M: 坏的解释器: 没有那个文件或目录 错误
1.错误描述 我在Windows 10 系统下打包dolphinscheduler,上传到centos7解压之后,执行脚本报如下错误: -bash: ./dolphinscheduler-daemon ...
- 18.java设计模式之中介者模式
基本需求 智能家庭包括各种设备,闹钟.咖啡机.电视机.窗帘等 要看电视时,各个设备可以协同工作,自动完成看电视的准备工作,比如流程为:闹铃响起->咖啡机开始做咖啡->窗帘自动落下-> ...
- 【MySQL】DDL数据定义语言的基本用法create、drop和alter(增删改)
DDL 的基础语法 文章目录 DDL 的基础语法 对数据库进行定义 对数据表进行定义 创建表结构(数据表) 设计工具 修改表结构 小结 参考资料 简单复习一波 SQL必知必会 DDL 的英文全称是 D ...
- 【Oracle】更改oracle中的用户名称
修改oracle中的用户名,要需要修改oracle基表中的相关内容, 1.查看user#, select user#,name from user$ s where s.name='用户修改前的'; ...
- 【ORACLE】awr报告问题分析
本文转自:http://www.linuxidc.com/Linux/2015-10/123959.htm 感谢分享 1.问题说明 运维人员都有"节日休假恐怖症",越到节日.休假和 ...
- Mybatis Plus 3.4版本之后分页插件的变化
一.MybatisPlusInterceptor 从Mybatis Plus 3.4.0版本开始,不再使用旧版本的PaginationInterceptor ,而是使用MybatisPlusInter ...
- apscheduler(定时任务) 基于redis持久化配置操作
apscheduler(定时任务) 基于redis持久化配置操作 安装模块 pip install apscheduler 导入模块配置 ## 配置redis模块 from apscheduler.j ...
- B树、B+树索引算法原理(下)
B树.B+树索引算法原理(下) - codedump的网络日志 https://www.codedump.info/post/20200615-btree-2/
- dotnet .NET
小结: 1.一个.NET应用是一个使用.NET Framework类库来编写,并运行于公共语言运行时Common Language Runtime之上的应用程序. Microsoft .N ...
- PowerApps画布应用编码规范 和指南
花了一番功夫把PowerApps编码最佳实践的官方白皮书本地化了一下,顺便对部分产品变更做了校对和注释,欢迎大家查阅和分享. 从我实际的项目实施经验来讲,内容还是值得一读,可以帮助项目更好维护和管理. ...