https://codeforces.com/contest/1355

打一半和室友开黑去了哈哈哈哈哈哈反正不计分(不要学我)

A. Sequence with Digits

这题我会证!首先对于百位来说,不可能从x跳到x+2,只能从x变成x+1或者不变(因为最大变化量为 \(9\times9=81\))

这样的话大约1000次内,百位不可避免地从9变成0,这样min的值是0,变化量min*max就是一直是0了

#include <bits/stdc++.h>
using namespace std;
#define repeat(i,a,b) for(int i=(a),_=(b);i<_;i++)
#define repeat_back(i,a,b) for(int i=(b)-1,_=(a);i>=_;i--)
int cansel_sync=(ios::sync_with_stdio(0),cin.tie(0),0);
const int N=200010; typedef long long ll;
#define int ll
int a,k;
string s;
signed main(){
int T; cin>>T;
while(T--){
cin>>a>>k;
while(--k){
s=to_string(a);
int x=*min_element(s.begin(),s.end())-48;
int y=*max_element(s.begin(),s.end())-48;
if(x==0)break;
a+=x*y;
}
cout<<a<<endl;
}
return 0;
}

B. Young Explorers

比赛中我自始至终都以为所有探险者都要组队,然后emmm...

贪心,尽量组规模小的队,所以排个序就好了

感谢zkx巨佬提供的代码(没错,我懒了补题)

#include <bits/stdc++.h>
using namespace std;
const int N = 2e5+7; int n;
int a[N]; inline void solve() {
cin >> n;
for (int i = 1; i <= n; ++i) {
cin >> a[i];
}
sort(a+1, a+n+1);
int res = 0;
for (int i = 1, cnt = 0; i <= n; ++i) {
++cnt;
if (cnt >= a[i]) {
++res;
cnt = 0;
}
}
cout << res << endl;
} signed main() {
ios::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL);
int T = 1;
cin >> T;
for (int t = 1; t <= T; ++t) {
solve();
}
return 0;
}

C. Count Triangles

先讲一下我的思路

\(A≤x≤B≤y≤C≤z≤D\)

因为 \(x\) 范围不大,考虑枚举 \(x\) 的值。这样对于任意满足要求的 \(y\),都有 \(C\le z\le \min(D,x+y-1)\),或者说,\(z\) 的方案数为 \(\max(0,\min(D,x+y-1)-C+1)\)。令这个东西为 \(f(y)=\max(0,\min(D,x+y-1)-C+1)\),函数图像大概长这样

先一次函数上升,然后变成常函数。此时就能成两段讨论(一次函数和常函数),求出两个转折点什么的,太过于数学,逃了

然后放个没人能看懂的代码(经刘老师提醒,2020-5-17 11:45之前放的是错误代码,现已更正)

#include <bits/stdc++.h>
using namespace std;
#define repeat(i,a,b) for(int i=(a),_=(b);i<_;i++)
#define repeat_back(i,a,b) for(int i=(b)-1,_=(a);i>=_;i--)
int cansel_sync=(ios::sync_with_stdio(0),cin.tie(0),0);
const int N=200010; typedef long long ll;
#define int ll
int a,b,c,d;
signed main(){
cin>>a>>b>>c>>d;
int ans=0;
repeat(i,a,b+1){
int x=max(c,i+b-1); //第一个转折点
int y=min(i+c-1,d); //第二个转折点
int l=x-c+1,r=y-c+1;
if(x<=y)ans+=(l+r)*(r-l+1)/2; //一次函数(等差数列求和)
if(i+c-1>max(x-1,y))ans+=(i+c-1-max(x-1,y))*(d-c+1); //常函数
}
cout<<ans<<endl;
return 0;
}

等会补个别人家的代码(雾,我作业来不及了,不补了)

D. Game With Array

这题就一sb题。如果 \(2N> S\),这意味着序列中至少存在一个1,然后。。就NO了(还没证明)

如果 \(2N\le S\),那就构造一个序列:\([2,2,2,...,2,(S-2(N-1))]\),所有数都大于等于 \(2\),所以这个序列的任意子序列之和都不可能是 \(1\),也不可能是 \(S-1\)(因为存在子序列和为 \(S-1\) 就必然存在子序列和为 \(1\))。而子串又是一种特殊的子序列,所以完全ojbk

更:看了一下官方题解,来证明一波 \(2N>S\) 的情况

先假定 \(K\le \dfrac S 2\)。对序列求个前缀和 \(sum[i]=\sum\limits_{j=1}^{i}a[j]\),\(sum[0]=0\)。我们知道区间和相当于两个前缀和的差值,而这个差值不能等于 \(K\) 或者 \(S-K\),这意味着对于每个 \(sum[i]\) 都不能出现另一个 \(sum[j]=(sum[i]+K)\%S\)(非常巧妙,如果 \(sum[i]+K\ge S\),取模后正好等于 \(sum[i]-(S-K)\),差值为 \(S-K\),太牛逼了)

也就是,对每个 \(sum[i]\),我们认为它占用了两个位置 \(sum[i]\) 和 \((sum[i]+K)\%S\)。总共 \(S\) 个座位,要坐 \(2N\) 个人,还有 \(2N>S\) 的限制,想想都不可能

#include <bits/stdc++.h>
using namespace std;
#define repeat(i,a,b) for(int i=(a),_=(b);i<_;i++)
#define repeat_back(i,a,b) for(int i=(b)-1,_=(a);i>=_;i--)
int cansel_sync=(ios::sync_with_stdio(0),cin.tie(0),0);
const int N=200010; typedef long long ll;
#define int ll
int n,s;
signed main(){
cin>>n>>s;
if(2*n<=s){
cout<<"YES"<<endl;
repeat(i,0,n-1)cout<<2<<' ';
cout<<s-(n-1)*2<<endl;
cout<<1<<endl;
}
else
cout<<"NO"<<endl;
return 0;
}

E. Restorer Distance

我们可以很轻松地算出,如果最终状态为每个位置高度为 \(H\) 的代价是多少。因此 \(H\) 的选取就成为本题的关键

大佬们就能一眼看出,代价对 \(H\) 存在单峰(随 \(H\) 先递减后递增),因此三分。那么为什么存在单峰呢?太难顶了,留作习题答案略(qwq)

我的三分其实就是二分,感觉能加一点速(?)感觉最快的可能是1.618优选法,但是我写不来(?)

我的方法是 \(O(n\log n\)),标程是 \((\log^2n)\) 因为处理了前缀和,get_cost() 里只要 lowerbound 一下就能算答案了,真是妙啊

#include <bits/stdc++.h>
using namespace std;
#define repeat(i,a,b) for(int i=(a),_=(b);i<_;i++)
#define repeat_back(i,a,b) for(int i=(b)-1,_=(a);i>=_;i--)
int cansel_sync=(ios::sync_with_stdio(0),cin.tie(0),0);
const int N=100010; typedef long long ll;
#define int ll
int n,A,B,C;
int a[N];
int get_cost(int h){
int up=0,down=0;
repeat(i,0,n)
(h>a[i]?up:down)+=abs(a[i]-h);
int t=min(up,down);
return (up-t)*A+t*B+(down-t)*C;
}
signed main(){
cin>>n>>A>>C>>B; B=min(B,A+C);
repeat(i,0,n)
cin>>a[i];
int l=0,r=1e9+1;
while(l<r){
int x=(l+r)/2,y=x+1;
if(get_cost(x)<get_cost(y))r=y-1;
else l=x+1;
}
cout<<get_cost(l)<<endl;
return 0;
}

Codeforces Round #643 (Div. 2) 题解 (ABCDE)的更多相关文章

  1. Codeforces Round #646 (Div. 2) 题解 (ABCDE)

    目录 A. Odd Selection B. Subsequence Hate C. Game On Leaves D. Guess The Maximums E. Tree Shuffling ht ...

  2. Codeforces Round #182 (Div. 1)题解【ABCD】

    Codeforces Round #182 (Div. 1)题解 A题:Yaroslav and Sequence1 题意: 给你\(2*n+1\)个元素,你每次可以进行无数种操作,每次操作必须选择其 ...

  3. Codeforces Round #608 (Div. 2) 题解

    目录 Codeforces Round #608 (Div. 2) 题解 前言 A. Suits 题意 做法 程序 B. Blocks 题意 做法 程序 C. Shawarma Tent 题意 做法 ...

  4. Codeforces Round #525 (Div. 2)题解

    Codeforces Round #525 (Div. 2)题解 题解 CF1088A [Ehab and another construction problem] 依据题意枚举即可 # inclu ...

  5. Codeforces Round #528 (Div. 2)题解

    Codeforces Round #528 (Div. 2)题解 A. Right-Left Cipher 很明显这道题按题意逆序解码即可 Code: # include <bits/stdc+ ...

  6. Codeforces Round #466 (Div. 2) 题解940A 940B 940C 940D 940E 940F

    Codeforces Round #466 (Div. 2) 题解 A.Points on the line 题目大意: 给你一个数列,定义数列的权值为最大值减去最小值,问最少删除几个数,使得数列的权 ...

  7. Codeforces Round #677 (Div. 3) 题解

    Codeforces Round #677 (Div. 3) 题解 A. Boring Apartments 题目 题解 简单签到题,直接数,小于这个数的\(+10\). 代码 #include &l ...

  8. Codeforces Round #665 (Div. 2) 题解

    Codeforces Round #665 (Div. 2) 题解 写得有点晚了,估计都官方题解看完切掉了,没人看我的了qaq. 目录 Codeforces Round #665 (Div. 2) 题 ...

  9. Codeforces Round #383 (Div. 2) 题解【ABCDE】

    Codeforces Round #383 (Div. 2) A. Arpa's hard exam and Mehrdad's naive cheat 题意 求1378^n mod 10 题解 直接 ...

随机推荐

  1. 【Docker】Docker启动停止重启 Redirecting to /bin/systemctl start docker.service

    [root@liuawen local]# docker -v Docker version 1.13.1, build cccb291/1.13.1 [root@liuawen local]# 启动 ...

  2. ctfhub技能树—文件上传—.htaccess

    首先介绍一下.htaccess(来自百度百科) .htaccess文件(或者"分布式配置文件"),全称是Hypertext Access(超文本入口).提供了针对目录改变配置的方法 ...

  3. oracle_fdw的安装和使用

    1.下载instant oracle client 下载网址:https://www.oracle.com/technetwork/topics/linuxx86-64soft-092277.html ...

  4. DB2版本升级(V9.7升级到V11.1)

    1.V11.1版本升级路线 DB2 11.1 可以将现有的 Db2 V9.7.Db2 V10.1 或 Db2 V10.5 实例和数据库直接升级到 Db2 V11.1.如果 Db2 服务器正在 Db2 ...

  5. Description Resource Path Location Type Failure to transfer org.apache.maven.plugins:maven-surefire-

    url:https://www.pianshen.com/article/8003307916/ Description Resource Path Location Type Failure to ...

  6. [Usaco2008 Mar]牛跑步

    题目描述 BESSIE准备用从牛棚跑到池塘的方法来锻炼. 但是因为她懒,她只准备沿着下坡的路跑到池塘, 然后走回牛棚. BESSIE也不想跑得太远,所以她想走最短的路经. 农场上一共有M (1 < ...

  7. HTML基础复习3

    CSS 可以理解为对HTML的一种补充 CSS由两部分组成:选择器.声明,声明中包含属性和值 CSS中的选择器 HTML标签选择器 类选择器 在标签上使用class属性为标签起个类名,在CSS中使用. ...

  8. 计算机网络安全 —— 对称加密算法 DES

    一.对称加密算法概念 我们通过计算机网络传输数据时,如果无法防止他人窃听, 可以利用密码学技术将发送的数据变换成对任何不知道如何做逆变换人都不可理解的形式, 从而保证了数据的机密性.这种变换被称为加密 ...

  9. CSS响应式布局学习笔记(多种方法解决响应式问题)

    在做web开发的工作中,会遇到需要我给页面根据设计的要求,进行响应式布局,这里跟大家分享下我对于响应式布局的解决方法: 我主要利用的是CSS3 媒体查询,即media queries,可以针对不同的媒 ...

  10. 【Android初级】使用TypeFace设置TextView的文字字体(附源码)

    在Android里面设置一个TextView的文字颜色和文字大小,都很简单,也是一个常用的基本功能.但很少有设置文字字体的,今天要分享的是通过TypeFace去设置TextView的文字字体,布局里面 ...