题意:有一个长度为N的序列A,满足1≤Ai≤i,每个数的正负号不知。请输出一种正负号的情况,使得所有数的和为0。(N≤100000)

解法:(我本来只想静静地继续做一个口胡选手...←_← 但是因为这题的贪心实在是太厉害了!我就单看,就盯了题解半小时以上...而代码又那么短,我就打了代码了...其实我又不太理解为什么一定要排序。)

贪心部分的理论依据:前i个数可以凑出1~sum[i]的所有整数。

证明:第二类数学归纳,n=1时成立,假设n=k之前所有项都成立,当n=k+1时。sum[k+1]=sum[k]+a[k+1]。
只需证明能凑出sum[k]+1~sum[k+1]间的整数即可。设1≤p≤a[k+1],sum[k]+p=sum[k]+a[k+1]-(a[k+1]-p)。
因为1≤a[i]≤i,易得sum[k]≥k,a[k+1]-p≤k。又因为已知前k个数可以凑出1~sum[k],所以一定可以凑出a[k+1]-p。
所以只需从之前凑出sum[k]里面剪掉凑出a[k+1]-p的数就可以凑出sum[k]+p。所以从1~sum[k+1]都可以凑出。

实现就是输入时存一下sum,若为奇数就无解,否则再排个序,从大到小扫一遍,选凑成和为sum/2的数的符号为+,其余为-。

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<algorithm>
4 #include<iostream>
5 using namespace std;
6
7 const int N=100010;
8 struct node{int x,id;}a[N];
9 int b[N],ans[N];
10
11 bool cmp(node x,node y) {return x.x>y.x;}
12 int main()
13 {
14 int n;
15 long long sum;//不能用int
16 while (~scanf("%d",&n))
17 {
18 sum=0;
19 for (int i=1;i<=n;i++)
20 {
21 scanf("%d",&a[i].x);
22 a[i].id=i, sum+=a[i].x;
23 }
24 if (sum%2) {printf("No\n");continue;}
25 printf("Yes\n");
26 sum/=2;
27 sort(a+1,a+1+n,cmp);
28 for (int i=1;i<=n;i++)
29 {
30 if (a[i].x<=sum) ans[a[i].id]=1,sum-=a[i].x;
31 else ans[a[i].id]=-1;
32 }
33 printf("%d",ans[1]);
34 for (int i=2;i<=n;i++)
35 printf(" %d",ans[i]);
36 printf("\n");
37 }
38 return 0;
39 }

【uva 1614】Hell on the Markets(算法效率--贪心)的更多相关文章

  1. 【uva 1617】Laptop(算法效率--贪心,2种理解)

    题意:有N条长度为1的线段,要求使每条线段分别在相应区间,且"空隙"数目最小.输出"空隙"数.(1≤N≤100000) 解法:(P.S.我这题竟做了2个多小时, ...

  2. 【uva 1615】Highway(算法效率--贪心 区间选点问题)

    题意:给定平面上N个点和一个值D,要求在x轴上选出尽量少的点,使得对于给定的每个店,都有一个选出的点离它的欧几里德距离不超过D. 解法:先把问题转换成模型,把对平面的点满足条件的点在x轴的直线上可得到 ...

  3. 【bzoj 3433】{Usaco2014 Jan} Recording the Moolympics(算法效率--贪心)

    题意:给出n个区间[a,b),有2个记录器,每个记录器中存放的区间不能重叠.求2个记录器中最多可放多少个区间. 解法:贪心.只有1个记录器的做法详见--关于贪心算法的经典问题(算法效率 or 动态规划 ...

  4. UVA 1614 - Hell on the Markets

    题意: 输入n个数,第i个数ai满足1≤ai≤i.对每个数添加符号,使和值为0. 分析: 排序后从最大的元素(假设为k)开始,凑出sum/2即可.用去掉了k的集合,一定可以凑出sum/2 - a[k] ...

  5. UVa 1614 Hell on the Markets (贪心+推理)

    题意:给定一个长度为 n 的序列,满足 1 <= ai <= i,要求确实每一个的符号,使得它们和为0. 析:首先这一个贪心的题目,再首先不是我想出来的,是我猜的,但并不知道为什么,然后在 ...

  6. UVA 1614 - Hell on the Markets 奇怪的股市(贪心,结论)

    先证明一个结论吧,对于1≤ai≤i+1,前面ai个数一定可以凑出1~sum[i]中的任意一个数. 对于i=1显然成立, 假设对于i=k结论成立,那么对于i=k+1来说,只要证明sum[k]+i,1≤i ...

  7. UVA - 1614 Hell on the Markets(奇怪的股市)(贪心)

    题意:输入一个长度为n(n<=100000)的序列a,满足1<=ai<=i,要求确定每个数的正负号,使得所有数的总和为0. 分析: 1.若总和为0,则未加符号之前,所有数之和必为偶数 ...

  8. 【uva 1312】Cricket Field(算法效率--技巧枚举)

    题意:一个 L*R 的网格里有 N 棵树,要求找一个最大空正方形并输出其左下角坐标和长.(1≤L,R≤10000, 0≤N≤100) 解法:枚举空正方形也就是枚举空矩阵,先要固定一个边,才好继续操作. ...

  9. 【uva 1153】Keep the Customer Satisfied(算法效率--贪心+优先队列)

    题意:有N个工作,已知每个工作需要的时间和截止时间.要求所有工作穿行完成,第一项任务开始的时间不早于时刻0.问最多能完成多少个工作.(N≤800000) 解法:贪心.可以模型化题目为:已知N个任务的长 ...

随机推荐

  1. ssh升级以及ssh: symbol lookup error: ssh: undefined symbol: EVP_aes_128_ctr错误处理

    1.解压安装openssl包:(不能卸载openssl,否则会影响系统的ssl加密库文件,除非你可以做两个软连接libcryto和libssl) # tar -zxvf openssl-1.0.1.t ...

  2. Linux SSH , SCP 建立信任关系(免密传输)

    最近有个需求,Jenkins需要将war传输到各个项目节点中,所以需要远程执行各个节点的shell脚本.但是中间有个输入密码的过程,在自动化部署中是行不通的,故需要增加免密登录.具体如下: 如果想在  ...

  3. 【C++】《C++ Primer 》第八章

    第八章 IO库 一.IO类 1. 标准库定义的IO类型 头文件 作用 类型 iostream 从标准流中读写数据 istream, wistream 从流读取数据 ostream, wostream ...

  4. .NET 5 程序高级调试-WinDbg

    上周和大家分享了.NET 5开源工作流框架elsa,程序跑起来后,想看一下后台线程的执行情况.抓了个进程Dump后,使用WinDbg调试,加载SOS调试器扩展,结果无法正常使用了: 0:000> ...

  5. Java并发包源码学习系列:挂起与唤醒线程LockSupport工具类

    目录 LockSupport概述 park与unpark相关方法 中断演示 blocker的作用 测试无blocker 测试带blocker JDK提供的demo 总结 参考阅读 系列传送门: Jav ...

  6. Hbase Region合并

    业务场景: Kafka+SparkStreaming+Hbase由于数据大量的迁移,再加上业务的改动,新增了很多表,导致rerigon总数接近4万(36个节点) 组件版本: Kafka:2.1.1 S ...

  7. (十)Python装饰器

    装饰器:本质就是函数,功能是为其他函数添加附加功能. 两个原则: 1.不修改被修饰函数的源代码 2.不修改被修饰函数的调用方式 一个栗子 def test(): res = 0 for i in ra ...

  8. 代码审计 - BugkuCTF

    extract变量覆盖: 相关函数: extract()函数:从数组中将变量导入到当前的符号表.把数组键名作为变量名,数组的键值作为变量值.但是当变量中有同名的元素时会默认覆盖掉之前的变量值. tri ...

  9. You shouldn't use *any* general-purpose hash function for user passwords, not BLAKE2, and not MD5, SHA-1, SHA-256, or SHA-3

    hashlib - Secure hashes and message digests - Python 3.8.3 documentation https://docs.python.org/3.8 ...

  10. 从URL输入到页面展现到底发生什么?

    目录 前言 一.URL 到底是啥 二.域名解析(DNS) 1.IP 地址 2.什么是域名解析 3. 浏览器如何通过域名去查询 URL 对应的 IP 呢 4. 小结 三.TCP 三次握手 1.TCP 三 ...