P3261 [JLOI2015]城池攻占 题解
题目
小铭铭最近获得了一副新的桌游,游戏中需要用 \(m\) 个骑士攻占 \(n\) 个城池。这 \(n\) 个城池用 \(1\) 到 \(n\) 的整数表示。除 \(1\) 号城池外,城池 \(i\) 会受到另一座城池 \(f_i\) 的管辖,其中 \(f_i < i\)。也就是说,所有城池构成了一棵有根树。这 \(m\) 个骑士用 \(1\) 到 \(m\) 的整数表示,其中第 \(i\) 个骑士的初始战斗力为 \(s_i\),第一个攻击的城池为 \(c_i\)。
每个城池有一个防御值 \(h_i\),如果一个骑士的战斗力大于等于城池的生命值,那么骑士就可以占领这座城池;否则占领失败,骑士将在这座城池牺牲。占领一个城池以后,骑士的战斗力将发生变化,然后继续攻击管辖这座城池的城池,直到占领 \(1\) 号城池,或牺牲为止。
除 \(1\) 号城池外,每个城池 \(i\) 会给出一个战斗力变化参数 \(a_i\);\(v_i\)。若 \(a_i=0\),攻占城池 i 以后骑士战斗力会增加 \(v_i\);若 \(a_i =1\),攻占城池 \(i\) 以后,战斗力会乘以 \(v_i\)。注意每个骑士是单独计算的。也就是说一个骑士攻击一座城池,不管结果如何,均不会影响其他骑士攻击这座城池的结果。
现在的问题是,对于每个城池,输出有多少个骑士在这里牺牲;对于每个骑士,输出他攻占的城池数量。
输入格式
第 \(1\) 行包含两个正整数 \(n;m\),表示城池的数量和骑士的数量。
第 \(2\) 行包含 \(n\) 个整数,其中第 \(i\) 个数为 \(h_i\),表示城池 \(i\) 的防御值。
第 \(3\) 到 \(n +1\) 行,每行包含三个整数。其中第 \(i +1\) 行的三个数为 \(fi;ai;vi\),分别表示管辖这座城池的城池编号和两个战斗力变化参数。
第 \(n +2\) 到 \(n + m +1\) 行,每行包含两个整数。其中第 \(n + i\) 行的两个数为 \(si;ci\),分别表示初始战斗力和第一个攻击的城池。
输出格式
输出 \(n + m\) 行,每行包含一个非负整数。其中前 \(n\) 行分别表示在城池 \(1\) 到 \(n\) 牺牲的骑士数量,后 \(m\) 行分别表示骑士 \(1\) 到 \(m\) 攻占的城池数量。
输入样例
5 5
50 20 10 10 30
1 1 2
2 0 5
2 0 -10
1 0 10
20 2
10 3
40 4
20 4
35 5
输出样例
2
2
0
0
0
1
1
3
1
1
题解
在每个节点上建一个堆, 把每个骑士加入进他第一个攻打的城市的堆
对于每个城市, 将其和子树的堆合并, 然后将牺牲的骑士pop出来, 记录牺牲的个数和击败的个数, 对城市的战斗力做相应的操作.
合并堆用左偏树, 对战斗力操作用类似线段树的lazy标记
代码
#include <bits/stdc++.h>
using namespace std;
const int N = 3e5 + 10;
int n, m, fa[N], c[N], a[N], rt[N], ls[N], rs[N], dep[N], Dep[N], die[N], ans[N];;
long long h[N], v[N], s[N], add[N], tim[N];
void pushdown(int x) {
if (add[x] == 0 && tim[x] == 1) return;
if (ls[x]) {
tim[ls[x]] *= tim[x];
add[ls[x]] *= tim[x];
add[ls[x]] += add[x];
s[ls[x]] *= tim[x];
s[ls[x]] += add[x];
}
if (rs[x]) {
tim[rs[x]] *= tim[x];
add[rs[x]] *= tim[x];
add[rs[x]] += add[x];
s[rs[x]] *= tim[x];
s[rs[x]] += add[x];
}
add[x] = 0, tim[x] = 1;
}
int merge(int x, int y) {
if (!x || !y) return x ^ y;
pushdown(x), pushdown(y);
if (s[x] > s[y]) swap(x, y);
rs[x] = merge(rs[x], y);
if (dep[ls[x]] < dep[rs[x]]) swap(ls[x], rs[x]);
dep[x] = dep[ls[x]] + 1;
return x;
}
int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) scanf("%lld", h + i), rt[i] = -1;
Dep[1] = 1, dep[0] = -1;
for (int i = 2; i <= n; i++) {
scanf("%d%d%lld", fa + i, a + i, v + i);
Dep[i] = Dep[fa[i]] + 1;
}
for (int i = 1; i <= m; i++) {
scanf("%lld%d", s + i, c + i);
tim[i] = 1;
if (rt[c[i]] == -1) rt[c[i]] = i;
else rt[c[i]] = merge(rt[c[i]], i);
}
for (int i = n; i >= 1; i--) {
while (rt[i] != -1) {
if (s[rt[i]] < h[i]) {
die[rt[i]] = i;
pushdown(rt[i]);
if (!ls[rt[i]]) rt[i] = -1;
else rt[i] = merge(ls[rt[i]], rs[rt[i]]);
} else break;
}
if (i == 1) break;
if (rt[i] == -1) continue;
if (a[i]) tim[rt[i]] *= v[i], add[rt[i]] *= v[i], s[rt[i]] *= v[i];
else add[rt[i]] += v[i], s[rt[i]] += v[i];
pushdown(rt[i]);
if (rt[fa[i]] == -1) rt[fa[i]] = rt[i];
else rt[fa[i]] = merge(rt[fa[i]], rt[i]);
}
for (int i = 1; i <= m; i++) ans[die[i]]++;
for (int i = 1; i <= n; i++) printf("%d\n", ans[i]);
for (int i = 1; i <= m; i++) printf("%d\n", Dep[c[i]] - Dep[die[i]]);
return 0;
}
P3261 [JLOI2015]城池攻占 题解的更多相关文章
- [洛谷P3261] [JLOI2015]城池攻占(左偏树)
不得不说,这道题目是真的难,真不愧它的“省选/NOI-”的紫色大火题!!! 花了我晚自习前半节课看题解,写代码,又花了我半节晚自习调代码,真的心态爆炸.基本上改得和题解完全一样了我才过了这道题!真的烦 ...
- BZOJ4003:[JLOI2015]城池攻占——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4003 https://www.luogu.org/problemnew/show/P3261 小铭 ...
- 洛谷P3261 [JLOI2015]城池攻占(左偏树)
传送门 每一个城市代表的点开一个小根堆,把每一个骑士合并到它开始攻占的城池所代表的点上 然后开始dfs,每一次把子树里那些还活着的骑士合并上来 然后再考虑当前点的堆,一直pop直到骑士全死光或者剩下的 ...
- [洛谷P3261][JLOI2015]城池攻占
题目大意:有$n$个点的树,第$i$个节点有一个权值$h_i$,$m$个骑士,第$i$个骑士攻击力为$v_i$,一个骑士可以把从它开始的连续的父亲中比它小的节点攻破,攻破一个节点可以把攻击力加或乘一个 ...
- P3261 [JLOI2015]城池攻占 (左偏树+标记下传)
左偏树还是满足堆的性质,节点距离就是离最近的外节点(无左或者右儿子 或者二者都没有)的距离,左偏性质就是一个节点左儿子的距离不小于右儿子,由此得:节点距离等于右儿子的距离+1. 本题就是对于每个节点 ...
- P3261 [JLOI2015]城池攻占
思路 左偏树维护每个骑士的战斗力和加入的深度(因为只能向上跳) 注意做乘法的时候加法tag会受到影响 代码 #include <cstdio> #include <algorithm ...
- BZOJ 4003 / Luogu P3261 [JLOI2015]城池攻占 (左偏树)
左偏树裸题,在树上合并儿子传上来的堆,然后小于当前结点防御值的就pop掉,pop的时候统计答案. 修改的话就像平衡树一样打懒标记就行了. 具体见代码 CODE #include<bits/std ...
- 【BZOJ4003】[JLOI2015]城池攻占 可并堆
[BZOJ4003][JLOI2015]城池攻占 Description 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池. 这 n 个城池用 1 到 n 的整数表示.除 1 号 ...
- BZOJ_4003_[JLOI2015]城池攻占_可并堆
BZOJ_4003_[JLOI2015]城池攻占_可并堆 Description 小铭铭最近获得了一副新的桌游,游戏中需要用 m 个骑士攻占 n 个城池. 这 n 个城池用 1 到 n 的整数表示.除 ...
随机推荐
- RocketMQ系列(二)环境搭建
RocketMQ的基本概念在上一篇中给大家介绍了,这一节将给大家介绍环境搭建.RocketMQ中最基础的就是NameServer,我们先来看看它是怎么搭建的. NameServer RocketMQ要 ...
- (七)DVWA之SQL Injection--SQLMap测试(Low)
目录结构 一.测试需求分析 二.SQLMap利用SQL注入漏洞,获取数据库信息 1.判断是否存在注入点 2.获取DBMS中所有的数据库名称 3.获取Web应用当前连接的数据库 4.列出数据库中的所有用 ...
- 总结梳理:webpack中如何使用vue
1. 安装vue的包 cnpm i vue -S 2. 由于在webpack中,推荐使用 .vue这个组件模板文件定义的组件,所以,需要安装, 能解析这个文件的loader: cnpm i vu ...
- class 类前向声明
/* 使用前向引用声明虽然可以解决一些问题,但它并不是万能的.需要注意的是, 尽管使用了前向引用声明,但是在提供一个完整的类声明之前,不能声明该类的对象, 也不能在内联成员函数中使用该类的 ...
- 栈 & 队列
栈 先进者后出,后进者先出,LIFO,典型的"栈"结构 从栈的操作特性上来看,栈是一种"操作受限"的线性表,只允许在一段插入和删除数据. 在功能上来说,数组和链 ...
- CMAKE工具学习
最近在学习各大物联网平台的SDK包,发现其工程都使用了一种叫cmake的工具在管理代码.于是花了一天时间简单学习了解了cmake工具,其目的是让自己能读懂使用该工具管理的代码,并能简单使用该工具管理我 ...
- struts用action的属性接收参数
新建一个javaweb项目 在项目中加入Struts.xml( 选中项目右键MyEclipse-->project facets-->Struts2-->finish) 在src项目 ...
- 编译e2fsprogs-1.40.2
1.解压源码 tar zxvf e2fsprogs-1.40.2.tar.gz 2.配置 ./configure --enable-elf-shlibs --host=arm-linux --with ...
- AJAX的GET请求、POST请求
感谢:链接(视频讲解很详细) AJAX(Asynchronous Javascript and XML):异步的JavaScript和XML(不需要刷新网页就可以更新网页数据) XML:百度百科 是一 ...
- 《Java并发编程的艺术》第5章 Java中的锁 ——学习笔记
参考https://www.cnblogs.com/lilinzhiyu/p/8125195.html 5.1 Lock接口 锁是用来控制多个线程访问共享资源的方式. 一般来说一个锁可以防止多个线程同 ...