参考链接:

https://mxnet.apache.org/api/faq/distributed_training

https://mxnet.apache.org/api/faq/gradient_compression

https://blog.csdn.net/grgary/article/details/50477738

Github:https://github.com/apache/incubator-mxnet

1、按照参考链接(https://www.jianshu.com/p/45ffeec98401),执行Step1 - Step4;

git clone时如果遇到RPC failed,可以执行git config --global http.postBuffer 524288000

$ cd incubator-mxnet

$ make -j $(nproc) USE_OPENCV=1 USE_BLAS=openblas

在我的电脑上,回报MKLDNN的错误,修改编译命令为make -j $(nproc) USE_OPENCV=1 USE_BLAS=openblas USE_MKLDNN=0 USE_DIST_KVSTORE=1时编译成功。

如果成功的话,即可执行后续操作;反之则根据报错信息查看是否已安装了相关依赖;

2、按照参考链接(https://www.cnblogs.com/huxianhe0/p/10118588.html),执行1.5-1.6,即可安装Python支持并运行MNIST手写体识别实例。

安装Python支持:

$ cd python

$ python setup.py install

运行MNIST手写体识别实例:

$ cd mxnet/example/image-classification

$ python train_mnist.py

每次修改完源码,

make -j $(nproc) USE_OPENCV= USE_BLAS=openblas USE_MKLDNN= USE_DIST_KVSTORE=
cd python && python setup.py install && cd ../

2个server、1个scheduler、2个worker:

export COMMAND='python example/gluon/image_classification.py --dataset cifar10 --model vgg11 --epochs 1 --kvstore dist_sync'
DMLC_ROLE=server DMLC_PS_ROOT_URI=127.0.0.1 DMLC_PS_ROOT_PORT= DMLC_NUM_SERVER= DMLC_NUM_WORKER= $COMMAND &
DMLC_ROLE=server DMLC_PS_ROOT_URI=127.0.0.1 DMLC_PS_ROOT_PORT= DMLC_NUM_SERVER= DMLC_NUM_WORKER= $COMMAND &
DMLC_ROLE=scheduler DMLC_PS_ROOT_URI=127.0.0.1 DMLC_PS_ROOT_PORT= DMLC_NUM_SERVER= DMLC_NUM_WORKER= $COMMAND &
DMLC_ROLE=worker DMLC_PS_ROOT_URI=127.0.0.1 DMLC_PS_ROOT_PORT= DMLC_NUM_SERVER= DMLC_NUM_WORKER= $COMMAND &
DMLC_ROLE=worker DMLC_PS_ROOT_URI=127.0.0.1 DMLC_PS_ROOT_PORT= DMLC_NUM_SERVER= DMLC_NUM_WORKER= $COMMAND

1个server、1个scheduler、1个worker(后续分析采用此设置):

export COMMAND='python example/gluon/image_classification.py --dataset cifar10 --model vgg11 --epochs 1 --kvstore dist_sync'
DMLC_ROLE=server DMLC_PS_ROOT_URI=127.0.0.1 DMLC_PS_ROOT_PORT= DMLC_NUM_SERVER= DMLC_NUM_WORKER= $COMMAND &
DMLC_ROLE=scheduler DMLC_PS_ROOT_URI=127.0.0.1 DMLC_PS_ROOT_PORT= DMLC_NUM_SERVER= DMLC_NUM_WORKER= $COMMAND &
DMLC_ROLE=worker DMLC_PS_ROOT_URI=127.0.0.1 DMLC_PS_ROOT_PORT= DMLC_NUM_SERVER= DMLC_NUM_WORKER= $COMMAND

若要查看节点间交互的流量大小,要在worker上添加PS_VERBOSE=2,具体命令如下:

export COMMAND='python example/gluon/image_classification.py --dataset cifar10 --model vgg11 --epochs 1 --kvstore dist_sync'
DMLC_ROLE=server DMLC_PS_ROOT_URI=127.0.0.1 DMLC_PS_ROOT_PORT= DMLC_NUM_SERVER= DMLC_NUM_WORKER= $COMMAND &
DMLC_ROLE=scheduler DMLC_PS_ROOT_URI=127.0.0.1 DMLC_PS_ROOT_PORT= DMLC_NUM_SERVER= DMLC_NUM_WORKER= $COMMAND &
DMLC_ROLE=worker PS_VERBOSE= DMLC_PS_ROOT_URI=127.0.0.1 DMLC_PS_ROOT_PORT= DMLC_NUM_SERVER= DMLC_NUM_WORKER= $COMMAND

默认情况下不使用梯度压缩,若要使用梯度压缩,需要对代码进行修改:

Technical Implementation

Two Bit Quantization

Currently the supported type of quantization uses two bits for each gradient value. Any positive value greater than or equal to the threshold sets two bits as 11, any negative value whose absolute value is greater or equal to the threshold sets two bits as 10, and others are set to 00. This enables us to store 16 quantized gradients as one float. The error in quantization, which is original_value - quantized_value is stored in the form of a gradient residual.

Types of Kvstore

Supported types of kvstore are device and all distributed kvstores such as dist_syncdist_async, and dist_sync_device. When kvstore is device, the communication between GPUs is compressed. Please note that this increases the memory usage of GPUs because of the additional residual stored. When using a distributed kvstore, worker-to-server communication is compressed. In this case, compression and decompression happen on the CPU, and gradient residuals will be stored on the CPU. Server-to-worker communication and device-to-device communication are not compressed to avoid multiple levels of compression.

Configuration Details

Threshold

A default threshold value of 0.5 is good for most use cases, but to get the most benefit from gradient compression for a particular scenario, it can be beneficial to experiment. If the threshold is set to a very large value, say 10.0, then the updates become too infrequent and the training will converge slower. Setting the threshold automatically is expected in a future release.

Quantization

This release supports 2-bit quantization for encoding of gradients to reduce the communication bandwidth during training. Future releases will support 1-bit quantization and other approaches for encoding of gradients based on experimental evidence of benefits and user demand.

Sparse Format

We believe that the density of data will need to be really low (i.e. around > 90% zeros) to reap benefits of the sparse format. However, this is an area of experimentation that will be explored in a future release.

一、GC模式下:

常规加密方法(数据类型为float32,4 Bytes):

1、worker(src/kvstore/kvstore_dist.h):

初始化上推:InitImpl() 22次 --- Push_() 22次 --- PushDefault() 22次;

上推:PushImpl() 22次 --- Push_() 22次 --- PushCompressed()  22次;

下拉:PullImpl() 22次;

上推:PushAsync() --- push_to_servers 异步上传,上传buff大小不定 --- ZPush();

下拉:PushAsync() --- pull_from_servers 异步下拉,下拉buff大小不定;

PS:

  • Push_() 中 merged.ctx().dev_mask() == cpu::kDevMask;
  • 加密操作加入到PushCompressed()中;
  • priority从0逐步下降到-21,共22个不同的值;
  • 当0 ≤ priority ≤ -20时,comm_buf (4N) --- gradient_compression->Quantize() --- small_buf(N)、res_buf(4N);
  • 当priority = -21时,Data Shape=10被压缩到4,压缩比为2.5;
  • PushAsync()被包含在PushDefault()与PushCompressed()中,但与其并行执行。

2、server(src/kvstore/kvstore_dist_server.h):

接受初始化上推:DataHandleEx() --- DataHandleDefault() & Initialization 次数与初始化上推次数相同;

接受上推:DataHandleEx() --- DataHandleCompressed() & Synced Push 次数与上推次数相同;

PS:

  • DataHandleCompressed()的Synced Push部分加入解密操作,解密后再解压,然后聚合;
  • DataHandleCompressed()每次都有decomp_buf.is_none()为True,stored.is_none()为False,merged.request.size() == 0;
  • 第一轮的22次DataHandleCompressed()中merged.merged.is_none()为True,否则为False;
  • gradient_compression_->Dequantize()前后merged.merged的数据大小未发生变化;
  • push_to_servers中的small_buf数据在流量传输中被压缩了4倍,然后流量被DataHandleCompressed()中的recved接受;
  • 我们发现,small_buf数据中有效数据主要就是流量传输的部分,占据数据的大约前1/4,余下的都是0;
  • 假如设置的阈值是0.5,comm_buf是0.6,那small_buf就是11(代表正数且绝对值超过阈值),而剩下的res_buf是0.1,没有发出去的梯度需要被累积起来,然后在后面发出去。

接受下拉:DataHandleEx() --- DataHandleCompressed() --- DefaultStorageResponse() & Pull 次数与下拉次数相同;

下拉:DefaultStorageResponse()将buff作为服务器的响应,传输给pull_from_servers;

上推(梯度压缩参数设置如下:compression_params = {'type': '2bit', 'threshold': 1e-6}):push_to_servers将small_buf (N) 传输给DataHandleCompressed(),然后解压后累加到merged.merged (4N)。

测试一:

节点间交互的流量大小日志(Push):

服务端接受Push的日志:

测试二:

客户端Push的日志:

服务端接受Push的日志:

结论:客户端Push --- 节点通信 --- 服务端接受Push;服务端的buff数据大小一般是客户端的4倍,且一般是通信流量的16倍(2-bit压缩)。

测试三:

节点间交互的流量大小日志(Pull):

服务端接受Pull的日志:

测试四:

客户端Pull的日志:

服务端接受Pull的日志:

结论:客户端Pull --- 节点通信 --- 服务端接受Pull,客户端与服务端的buff数据大小与通信流量相等。

二、默认模式下:

常规加密方法(数据类型为float32,4 Bytes):

1、worker(src/kvstore/kvstore_dist.h):

初始化上推:InitImpl() 22次 --- Push_() 22次 --- PushDefault() 22次;

上推:PushImpl() 22次 --- Push_() 22次 --- PushDefault()  22次;

下拉:PullImpl() 22次;

上推:PushAsync() --- push_to_servers 异步上传,上传buff大小不定 --- ZPush();

下拉:PushAsync() --- pull_from_servers 异步下拉,下拉buff大小不定;

PS:

  • Push_() 中 merged.ctx().dev_mask() == cpu::kDevMask;
  • 加密操作加入到PushDefault()中;
  • priority从0逐步下降到-21,共22个不同的值;
  • PushAsync()被包含在PushDefault()与PushCompressed()中,但与其并行执行。

2、server(src/kvstore/kvstore_dist_server.h):

接受初始化上推:DataHandleEx() --- DataHandleDefault() & Initialization 次数与初始化上推次数相同;

接受上推:DataHandleEx() --- DataHandleDefault() & Synced Push 次数与上推次数相同;

PS:DataHandleDefault()的Synced Push部分加入解密操作,解密后再聚合;

接受下拉:DataHandleEx() --- DataHandleDefault() --- DefaultStorageResponse() & Pull 次数与下拉次数相同;

下拉:DefaultStorageResponse()将buff作为服务器的响应,传输给pull_from_servers;

上推:push_to_servers将传输给DataHandleDefault()。

测试一:

节点间交互的流量大小日志(Push):

服务端接受Push的日志:

测试二:

客户端Push的日志:

服务端接受Push的日志:

结论:客户端Push --- 节点通信 --- 服务端接受Push,客户端与服务端的buff数据大小与通信流量相等。

测试三:

节点间交互的流量大小日志(Pull):

服务端接受Pull的日志:

测试四:

客户端Pull的日志:

服务端接受Pull的日志:

结论:客户端Pull --- 节点通信 --- 服务端接受Pull,客户端与服务端的buff数据大小与通信流量相等。

PushDefault():

float(32 bit):-nan;char(8 bit,(int)操作后的值):0 0 -64 -1;

char a -> b=(int)a  b=a (-128 ≤ a ≤ 127);

因此-64的存储形式(补码)为11000000;-1的存储形式为11111111。

由于在X86计算机中,采用的是小端存储方式,即低地址存储低位数据,高地址存储高位数据。

因此,这个float数从高位到低位的值为11111111,11000000,00000000,00000000.

float中的NaN(not a number)的定义为:阶码的每个二进制位全为1,并且尾数不为0;

由于符号位为1,因此这个float数为-nan.

-128的存储形式为10000000;-64的存储形式为11000000。

前一个float的值为11000000,10000000,00000000,00000000,后一个float的值为11000000,11000000,00000000,00000000.

任何一个数都的科学计数法表示都为1.xxx * 2^n,尾数部分就可以表示为xxxx,可以将小数点前面的1省略,所以23bit的尾数部分,可以表示的精度却变成了 24bit。而对于指数部分,因为指数可正可负,8位的指数位能表示的指数范围为:-127-128,所以指数部分的存储采用移位存储,存储的数据为元数据+127。

-4 = -1 * 2^2 = -4,-6 = -(1.1)2 * 2^2 = -1.5 * 4 = -6.

PushCompressed():

源码分析:

size_t size = small_buf.shape().Size() * mshadow::mshadow_sizeof(dtype);

CHECK_NOTNULL(ps_worker_)->ZPush(pskv.keys, vals, pskv.lens, cmd, [cb]() { cb(); });

我们查看数据得知,pskv.keys.size() = 2,vals.size() = size,pskv.lens.size() = 2;pskv.keys[0] = size,pskv.keys[1] = ps_key,pskv.lens[0] = 0,pskv.lens[1] = comm_buf.shape().Size() / 16 * 4,等价于size / 4

pskv.keys[1]中存储的ps_key用于将push_pskv与pull_pskv对应起来,详情参见EncodeCompressedKey()函数;

pskv.lens[1]中的16为2-bit压缩比,4为num_bytes。

KVPairs

  拥有keysvalslens等3个数组。lens和keys大小相等,表示每个key对应的val的个数。lens可为空,此时vals被平分。举例而言,若keys=[1,5],lens=[2,3],那么vals[0],vals[1]就对应的是keys[0],而vals[2],vals[3],vals[4]对应的就是keys[1]。而如果lens为空,则vals.size()必须是keys.size()(此处为2)的倍数,key[0]和key[1]各对应一半的vals。key的值仅用于不同key的区分,或者一些其他用途。

mxnet笔记的更多相关文章

  1. MXNet设计笔记之:深度学习的编程模式比较

    市面上流行着各式各样的深度学习库,它们风格各异.那么这些函数库的风格在系统优化和用户体验方面又有哪些优势和缺陷呢?本文旨在于比较它们在编程模式方面的差异,讨论这些模式的基本优劣势,以及我们从中可以学到 ...

  2. mxnet源码阅读笔记之include

    写在前面 mxnet代码的规范性比Caffe2要好,看起来核心代码量也小很多,但由于对dmlc其它库的依赖太强,代码的独立性并不好.依赖的第三方库包括: cub dlpack dmlc-core go ...

  3. Mxnet学习笔记(3)--自定义Op

    https://blog.csdn.net/u011765306/article/details/54562282 前言 今天因为要用到tile操作(类似np.tile,将数据沿axises进行数据扩 ...

  4. mxnet深度学习实战学习笔记-9-目标检测

    1.介绍 目标检测是指任意给定一张图像,判断图像中是否存在指定类别的目标,如果存在,则返回目标的位置和类别置信度 如下图检测人和自行车这两个目标,检测结果包括目标的位置.目标的类别和置信度 因为目标检 ...

  5. Windows安装mxnet

    code { white-space: pre } div.sourceCode { } table.sourceCode,tr.sourceCode,td.lineNumbers,td.source ...

  6. tensorflow+入门笔记︱基本张量tensor理解与tensorflow运行结构

    Gokula Krishnan Santhanam认为,大部分深度学习框架都包含以下五个核心组件: 张量(Tensor) 基于张量的各种操作 计算图(Computation Graph) 自动微分(A ...

  7. 机器学习笔记(4):多类逻辑回归-使用gluton

    接上一篇机器学习笔记(3):多类逻辑回归继续,这次改用gluton来实现关键处理,原文见这里 ,代码如下: import matplotlib.pyplot as plt import mxnet a ...

  8. Mxnet学习资源

    MxNet 学习笔记(1):MxNet中的NDArray http://mxnet.incubator.apache.org/api/python/symbol/symbol.html api文档 M ...

  9. 论文笔记:CNN经典结构2(WideResNet,FractalNet,DenseNet,ResNeXt,DPN,SENet)

    前言 在论文笔记:CNN经典结构1中主要讲了2012-2015年的一些经典CNN结构.本文主要讲解2016-2017年的一些经典CNN结构. CIFAR和SVHN上,DenseNet-BC优于ResN ...

随机推荐

  1. Servlet学习之Maven导入Servlet-api包与Tomcat冲突报500问题

    Maven导入Servlet-api包导致无法运行报500的问题 以下解决方式适用于跟我类似的配置环境,构建servlet程序后,启动Tomcat页面报"类com.tioxy.servlet ...

  2. Hexo 静态博客指南:建站教程(中)

    本文最初发布于我的个人博客Bambrow's Blog,采用 BY-NC-SA 许可协议,转载请注明出处.若有后续更新,将更新于原博客.欢迎去我的博客阅读更多文章! 本文详细记录一下站点建立过程,以便 ...

  3. 10-Pandas之数据融合(pd.merge()、df.join()、df.combine_first()详解)

    一.pd.merge() pd.merge()的常用参数 参数 说明 left 参与合并的左侧DataFrame right 参与合并的右侧DataFrame how 如何合并.值为{'left',' ...

  4. python基础day6_字典dict

    数据类型划分:可变数据类型.不可变数据类型 不可变数据类型(又叫可哈希):元祖,bool ,int,str, 可变数据类型(又叫不可哈希):list,dict,set(集合) dict的key必须是不 ...

  5. PHP ftp_size() 函数

    定义和用法 ftp_size() 函数返回 FTP 服务器上指定文件的大小. 该函数以字节返回指定文件的大小,如果出错则返回 -1. 语法 ftp_size(ftp_connection,file) ...

  6. C/C++编程笔记:inline函数的总结!C/C++新手值得收藏!

    在c/c++中,为了解决一些频繁调用的小函数大量消耗栈空间(栈内存)的问题,特别的引入了inline修饰符,表示为内联函数. 栈空间就是指放置程序的局部数据(也就是函数内数据)的内存空间. 在系统下, ...

  7. OpenVINO学习系列1

    OpenVINO介绍 OpenVINO是英特尔推出一套基于深度学习的计算机视觉加速优化框架,支持其它机器学习平台模型的压缩优化.加速计算等功能. 自发布以后就得到开发者的青睐,其强大的模型优化与压缩能 ...

  8. Java并发学习(一):进程和线程

    好好学习,天天向上 本文已收录至我的Github仓库DayDayUP:github.com/RobodLee/DayDayUP,欢迎Star,更多文章请前往:目录导航 前言 俗话说得好"一人 ...

  9. XSSFWorkbook

    支持2007以后的 此类与HSSFWorkbook(支持2007之前) 类似,读取文件时把全部的内容都存放到内存中,关闭输入流后. 内存与硬盘完全是毫无关系的两份数据,所有的操作都是对内存的操作,最后 ...

  10. JVM系列之:JIT中的Virtual Call接口

    目录 简介 最常用的接口List 多个List的调用 不一样的List调用 总结 简介 上一篇文章我们讲解了Virtual Call的定义并举例分析了Virtual Call在父类和子类中的优化. J ...