说明:若没有训练级联表,则需要相关级联表才能实现功能

文字识别

# -*- coding: utf-8 -*-
"""
简介:用样本训练数据,再识别
""" import cv2
import numpy as np
from PIL import Image #Python Image Lib
import skimage.feature as feature2d
import sklearn.neighbors as nhb
from sklearn.externals import joblib #对训练模型保存或读取
#cvhog=cv2.HOGDescriptor() #预处理图片
def imgPrepare(filename):
img=cv2.imread(filename,0)
img=np.uint8(img/img.ptp()*255)
img=np.where(img>128,255,img)
img=np.where(img<=128,0,img)
img=np.bitwise_not(img)
return img #横切
def splitchar(img,axis=1):
idxrowb=np.all(img<64,axis=axis)
idxrowi=np.uint8(idxrowb).ravel()
dy=idxrowi[1:]-idxrowi[:-1]
#print(dy)
rowb=np.argwhere(dy==255).ravel()
rowe=np.argwhere(dy==1).ravel()
#print(rowb,rowe)
if axis==1:
imglines=[img[b:e+1,:] for b,e in zip(rowb,rowe)]
else:
imglines=[img[:,b:e+1] for b,e in zip(rowb,rowe)] return imglines #切块
def splitBox(img):
idxrowb=np.all(img<64,axis=1)
idxrowi=np.uint8(idxrowb).ravel()
dy=idxrowi[1:]-idxrowi[:-1]
#print(dy)
rowb=np.argwhere(dy==255).ravel()
rowe=np.argwhere(dy==1).ravel()
b=0
e=-1
if len(rowe)>0:
e=rowe[-1]+1
if len(rowb)>0:
b=rowb[0]
return img[b:e,:] #把图片整成一样大小
def myResize(img,size=(48,48)):
h,w=img.shape
bw=max(h,w)
bh=bw
bimg=np.zeros((bh,bw),np.uint8)
if bw==w:
dh=(bh-h)//2
bimg[dh:dh+h,:]=img[:,:]
else:
dw=(bw-w)//2
bimg[:,dw:dw+w]=img[:,:] bimg=cv2.resize(bimg,size)
return bimg #获取hog向量 图片转为向量
def getHog(img,cell=(16,16),block=(3,3)):
vec=feature2d.hog(img,12,cell,block,'L2')
return vec #训练的主方法
gimg=imgPrepare('e:/sx.jpg')
lines=splitchar(gimg,axis=1)
chars=[]
for line in lines:
charlist=splitchar(line,axis=0)
cchars=[ myResize(splitBox(c)) for c in charlist]
chars.append(cchars)
chars=np.asarray(chars)
X=[]
Y=[]
y=0
for linech in chars: for ch in linech:
chhog=getHog(ch)
X.append(chhog)
Y.append(y) y+=1 KNC=nhb.KNeighborsClassifier(algorithm='ball_tree',n_neighbors=3)
KNC.fit(X,Y) joblib.dump(KNC,'knc.knn') # 识别的主方法
def predict(img):
knc=nhb.KNeighborsClassifier(algorithm='ball_tree',n_neighbors=3)
knc=joblib.load('knc.knn')
lines=splitchar(img,axis=1)
chars=[]
for line in lines:
charlist=splitchar(line,axis=0)
cchars=[ myResize(splitBox(c)) for c in charlist]
chars.append(cchars) chars=np.asarray(chars) Y=[]
for linech in chars:
x=[]
for ch in linech:
chhog=getHog(ch)
x.append(chhog) y=knc.predict(x)
print(y)
Y.append(y) return Y

文字识别

语音处理

def input(self,overtime=60,Noise=12000):

        time.sleep(0.5)
pa=au.PyAudio() stream=pa.open(format = au.paInt16, channels = 1, rate = 16000, input = True,frames_per_buffer = 4000)
spk=pa.open(format=au.paInt16,channels=1,rate=16000,output=True,frames_per_buffer=1000) filename='./temp/in_%s.wav'%(self._gettoken()) #pcm格式 wf = wave.open(filename, 'wb')
wf.setnchannels(1)
wf.setsampwidth(2)
wf.setframerate(16000) ch=0
ptparr=np.array([0,0,0,0])
begin=False while ch<overtime*4:
ch+=1
bs=stream.read(4000)
#spk.write(bs) arr=np.frombuffer(bs,dtype=np.short) ptp=arr.max()*1.0-arr.min()*1.0
ptparr[:-1]=ptparr[1:]
ptparr[-1]=np.abs(ptp) if not begin:
if ptparr[-1]>Noise * 1.5:
begin=True
ch=1
wf.writeframes(bs)
if self.debuge:
print('+',end='') else: if np.all(ptparr<Noise):
if self.debuge:
print('+')
break
else:
if self.debuge:
print('-',end='') wf.writeframes(bs) stream.close()
spk.close()
wf.close()
wr=wave.open(filename,'rb')
buf=wr.readframes(wr.getnframes())
wr.close()
pa.terminate()
return filename,buf
# self.speech.asr() def inputvoice(self,overtime=60,Noise=12000):
fn,buf=self.input(overtime,Noise)
result=self.speech.asr(buf)
msgs=[]
if 'result' in result.keys():
msgs=result['result']
msg=''
for m in msgs:
msg+=str(m)
return result['err_no'],msg

语言处理

#语音处理,录音

    def input(self,overtime=60,Noise=12000):

        time.sleep(0.5)
pa=au.PyAudio() stream=pa.open(format = au.paInt16, channels = 1, rate = 16000, input = True,frames_per_buffer = 4000)
spk=pa.open(format=au.paInt16,channels=1,rate=16000,output=True,frames_per_buffer=1000) filename='./temp/in_%s.wav'%(self._gettoken()) #pcm格式 wf = wave.open(filename, 'wb')
wf.setnchannels(1)
wf.setsampwidth(2)
wf.setframerate(16000) ch=0
ptparr=np.array([0,0,0,0])
begin=False while ch<overtime*4:
ch+=1
bs=stream.read(4000)
#spk.write(bs) arr=np.frombuffer(bs,dtype=np.short) ptp=arr.max()*1.0-arr.min()*1.0
ptparr[:-1]=ptparr[1:]
ptparr[-1]=np.abs(ptp) if not begin:
if ptparr[-1]>Noise * 1.5:
begin=True
ch=1
wf.writeframes(bs)
if self.debuge:
print('+',end='') else: if np.all(ptparr<Noise):
if self.debuge:
print('+')
break
else:
if self.debuge:
print('-',end='') wf.writeframes(bs) stream.close()
spk.close()
wf.close()
wr=wave.open(filename,'rb')
buf=wr.readframes(wr.getnframes())
wr.close()
pa.terminate()
return filename,buf
# self.speech.asr() def inputvoice(self,overtime=60,Noise=12000):
fn,buf=self.input(overtime,Noise)
result=self.speech.asr(buf)
msgs=[]
if 'result' in result.keys():
msgs=result['result']
msg=''
for m in msgs:
msg+=str(m)
return result['err_no'],msg

语音处理(录音)

import cv2
import numpy as np
from PIL import Image
#pip install PIL
#pip install opencv-python
#pip install dlib
dector=cv2.CascadeClassifier()
ret=dector.load('haarcascade_frontalface_alt_tree.xml')
if not ret:
print('未找到级联表文件:plate_cascade.xml')
exit() img=cv2.imread('e:/85n.jpg')
if img is None:
print('文件不存在')
exit()
#彩色转成灰度图像
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) gray=np.uint8(gray/gray.ptp()*255) boxs=dector.detectMultiScale(gray,1.015,1)
platelist=[]
for box in boxs:
x,y,w,h=box
g=img[y:y+h,x:x+w,:]
platelist.append(g)
linew=h//100+1
cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),linew)
gimg=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
image=Image.fromarray(gimg)
image.show()
image.close()

人脸识别

import cv2
detector=cv2.CascadeClassifier()
ret=detector.load('plate_cascade.xml')
if not ret:
print('error')
quit()
img=cv2.imread('cars1.jpg')
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
boxs=detector.detectMultiScale(gray,1.01,3)
for box in boxs:
x,y,w,h=box
p=img[y:y+h,x:x+w:]
name='%d_%d.jpg'%(x,h)
cv2.imwrite(name,p)

车牌识别

# -*- coding: utf-8 -*-
"""
Created on Thu May 17 18:13:35 2018 @author: inspiron
""" import cv2
from PIL import Image hog=cv2.HOGDescriptor()
hog.setSVMDetector(cv2.HOGDescriptor_getDefaultPeopleDetector())
img=cv2.imread('e:/1.jpg')
boxs,rets=hog.detectMultiScale(img) for box in boxs:
x,y,w,h=box
cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
gimg=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)
image=Image.fromarray(gimg)
image.show() cam=cv2.VideoCapture(0)
while True:
ret,img=cam.read()
if not ret:
break
boxs,rets=hog.detectMultiScale(img)
for box in boxs:
x,y,w,h=box
cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
cv2.imshow('hog',img)
ch=cv2.waitKey(5)
if ch==27:
break cv2.destroyAllWindows()
cam.release()

人形识别

# -*- coding: utf-8 -*-
"""
Created on Thu May 17 19:30:13 2018 @author: AI04班级
""" import cv2
import numpy as np
from PIL import Image #Python Image Lib
import skimage.feature as feature2d
import sklearn.neighbors as nhb
from sklearn.externals import joblib #对训练模型保存或读取
#cvhog=cv2.HOGDescriptor() def imgPrepare(filename):
img=cv2.imread(filename,0)
img=np.uint8(img/img.ptp()*255)
img=np.where(img>128,255,img)
img=np.where(img<=128,0,img)
img=np.bitwise_not(img)
return img def splitchar(img,axis=1):
idxrowb=np.all(img<64,axis=axis)
idxrowi=np.uint8(idxrowb).ravel()
dy=idxrowi[1:]-idxrowi[:-1]
#print(dy)
rowb=np.argwhere(dy==255).ravel()
rowe=np.argwhere(dy==1).ravel()
#print(rowb,rowe)
if axis==1:
imglines=[img[b:e+1,:] for b,e in zip(rowb,rowe)]
else:
imglines=[img[:,b:e+1] for b,e in zip(rowb,rowe)] return imglines def splitBox(img):
idxrowb=np.all(img<64,axis=1)
idxrowi=np.uint8(idxrowb).ravel()
dy=idxrowi[1:]-idxrowi[:-1]
#print(dy)
rowb=np.argwhere(dy==255).ravel()
rowe=np.argwhere(dy==1).ravel()
b=0
e=-1
if len(rowe)>0:
e=rowe[-1]+1
if len(rowb)>0:
b=rowb[0] return img[b:e,:] def myResize(img,size=(48,48)):
h,w=img.shape
bw=max(h,w)
bh=bw
bimg=np.zeros((bh,bw),np.uint8)
if bw==w:
dh=(bh-h)//2
bimg[dh:dh+h,:]=img[:,:]
else:
dw=(bw-w)//2
bimg[:,dw:dw+w]=img[:,:] bimg=cv2.resize(bimg,size)
return bimg def getHog(img,cell=(16,16),block=(3,3)):
vec=feature2d.hog(img,12,cell,block,'L2')
return vec
#main
gimg=imgPrepare('e:/sx.jpg')
lines=splitchar(gimg,axis=1)
chars=[]
for line in lines:
charlist=splitchar(line,axis=0)
cchars=[ myResize(splitBox(c)) for c in charlist]
chars.append(cchars)
chars=np.asarray(chars)
X=[]
Y=[]
y=0
for linech in chars: for ch in linech:
chhog=getHog(ch)
X.append(chhog)
Y.append(y) y+=1 KNC=nhb.KNeighborsClassifier(algorithm='ball_tree',n_neighbors=3)
KNC.fit(X,Y) joblib.dump(KNC,'knc.knn') def predict(img):
knc=nhb.KNeighborsClassifier(algorithm='ball_tree',n_neighbors=3)
knc=joblib.load('knc.knn')
lines=splitchar(img,axis=1)
chars=[]
for line in lines:
charlist=splitchar(line,axis=0)
cchars=[ myResize(splitBox(c)) for c in charlist]
chars.append(cchars) chars=np.asarray(chars) Y=[]
for linech in chars:
x=[]
for ch in linech:
chhog=getHog(ch)
x.append(chhog) y=knc.predict(x)
print(y)
Y.append(y) return Y

数字识别

Python_科学计算库的更多相关文章

  1. Python_科学计算平台__pypi体系的numpy、scipy、pandas、matplotlib库简介

    1.numpy--基础,以矩阵为基础的数学计算模块,纯数学 存储和处理大型矩阵. 这个是很基础的扩展,其余的扩展都是以此为基础. 快速学习入口 https://docs.scipy.org/doc/n ...

  2. SciPy - 科学计算库(上)

    SciPy - 科学计算库(上) 一.实验说明 SciPy 库建立在 Numpy 库之上,提供了大量科学算法,主要包括这些主题: 特殊函数 (scipy.special) 积分 (scipy.inte ...

  3. python科学计算库的numpy基础知识,完美抽象多维数组(原创)

    #导入科学计算库 #起别名避免重名 import numpy as np #小技巧:从外往内看==从左往右看 从内往外看==从右往左看 #打印版本号 print(np.version.version) ...

  4. python科学计算库numpy和绘图库PIL的结合,素描图片(原创)

    # 导入绘图库 from PIL import Image #导入科学计算库 import numpy as np #封装一个图像处理工具类 class TestNumpy(object): def ...

  5. numpy科学计算库的基础用法,完美抽象多维数组(原创)

    #起别名避免重名 import numpy as np #小技巧:print从外往内看==shape从左往右看 if __name__ == "__main__": print(' ...

  6. Python科学计算库

    Python科学计算库 一.numpy库和matplotlib库的学习 (1)numpy库介绍:科学计算包,支持N维数组运算.处理大型矩阵.成熟的广播函数库.矢量运算.线性代数.傅里叶变换.随机数生成 ...

  7. ubuntu14.04 下安装 gsl 科学计算库

    GSL(GNU Scientific Library)作为三大科学计算库之一,除了涵盖基本的线性代数,微分方程,积分,随机数,组合数,方程求根,多项式求根,排序等,还有模拟退火,快速傅里叶变换,小波, ...

  8. windows下如何快速优雅的使用python的科学计算库?

    Python是一种强大的编程语言,其提供了很多用于科学计算的模块,常见的包括numpy.scipy.pandas和matplotlib.要利用Python进行科学计算,就需要一一安装所需的模块,而这些 ...

  9. Python科学计算库Numpy

    Python科学计算库Numpy NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库. 1.简 ...

随机推荐

  1. spring boot:配置druid数据库连接池(开启sql防火墙/使用log4j2做异步日志/spring boot 2.3.2)

    一,druid数据库连接池的功能? 1,Druid是阿里巴巴开发的号称为监控而生的数据库连接池 它的优点包括: 可以监控数据库访问性能 SQL执行日志 SQL防火墙 2,druid的官方站: http ...

  2. git reset 与 git revert的区别?

    一,git reset的功能: 该命令修改HEAD的位置,即将HEAD指向的位置改变为之前存在的某个版本, 说明: 修改后,push到远程仓库时需要使用"git push -f"提 ...

  3. JS获取DropDownList选择项的值

    var dropDownList= document.getElementById("<%=DropDownListID.ClientID %>");//获取DropD ...

  4. 第一章 Linux操作系统及其历史介绍

    一.什么是操作系统 1.基本含义: 简称OS 是计算机系统中必不可少的基础系统软件,是应用程序运行和用户操作必备的基础环境 操作系统就是一个人与计算机之间的中介 2.组成方式: 操作系统的组成: 计算 ...

  5. flutter——android报错建议Suggestion: add 'tools:replace="android:label"'

    问题: 安装了一个新包,android出现了报错,建议add 'tools:replace="android:label"'. 原因: 项目application的label属性冲 ...

  6. [OGeek2019]bookmanager

    做过的代码量最大的一个题 说出的好也好,不好也不好,利用点很简单,就是一个大规模的heapoverflow,就是逆起来有点儿难度 思路很简单,就是利用堆溢出覆盖结构体中的指针为__free_hook, ...

  7. 给 Mac 添加右键菜单「使用 VSCode 打开」

    最终的实现效果是在文件 / 文件夹上右击时,会出现菜单项「用 VSCode 打开」,点击后会启动 Visual Studio Code 打开对应的文件 / 文件夹. 实现步骤 打开「自动操作.app」 ...

  8. 原生JS结合cookie实现商品评分组件

    开发思路如下: 1.利用JS直接操作DOM的方式开发商品评分组件,主要实现功能有:显示评价评分的样式以及将用户操作后对应的数据返回到主页面 2.主页面引入商品评分组件的js文件并根据规定格式的数据,生 ...

  9. BCVP,想真正为社区做努力的开发者们

    基于Net/Core,快速搭建 API & SPA 及微服务应用组织 BASE NETCORE (VUE) PROJECT TEAM 每一个.NET开发者都可以通过自己的开源项目(最好可以配套 ...

  10. POJ1840 Eqs

    题意描述 Eqs 求一个五元方程 \(a_1x_1^3+a_2x_2^3+a_3x_3^3+a_4x_4^3+a_5x_5^3=0\) 的解的个数. 题中给出 \(a_i\) 的值并且保证 \(-50 ...