LeetCode 64最小路径和
题目
给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。
说明:每次只能向下或者向右移动一步。
示例:
输入:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。
解释
此题运用的是动态规划, 而且和很多题目非常相似,题目要求每次只能向下走一步或者向右走一步。这就规定走到这一个点的路径只有两点,就是上面的点和左边的点。所以每一点的最小cost可以表示为
min(到达上面的点的最小cost, 到达左边的点的最小cost) + 当前点的 cost
这样就把问题分成子问题,创建一个二维数组cost用来保存到达每一点的最小cost。
递归式可以表示为
cost[i][j] = min(cost[i][j - 1] + grid[i][j], cost[i - 1][j] + grid[i][j]);
然后利用一个二层循环,把到达每一个点的最小值求出来。返回返回右下角的值即可。
代码
int minPathSum(vector<vector<int>>& grid) {
vector<vector<int>> cost = grid;
int n = grid.size(), m = grid[0].size();
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
//处理第一行和第一列的情况,如果不处理的话,数组会越界
if (i == 0) {
//一直向右走
cost[i][j] = cost[i][j - 1] + grid[i][j];
} else if (j == 0) {
//一直向下走
cost[i][j] = cost[i - 1][j] + grid[i][j];
} else {
//利用递推式求结果
cost[i][j] = min(cost[i][j - 1] + grid[i][j], cost[i - 1][j] + grid[i][j]);
}
}
}
//返回右下角值
return cost[n-1][m-1];
}
总结
- 关键的一点就是找出递推式。看当前最优解能否被前面的值推出
- 存储原来的数据一般可以用一个二维数组。但是有一些题目对空间有限制。比如LeetCode 413, 这样的话就要尽量去优化,看能不能用一维数组来代替。
类似题目
LeetCode 877
https://blog.csdn.net/qq874455953/article/details/82696196
LeetCode 64最小路径和的更多相关文章
- leetcode 64. 最小路径和 动态规划系列
目录 1. leetcode 64. 最小路径和 1.1. 暴力 1.2. 二维动态规划 2. 完整代码及执行结果 2.1. 执行结果 1. leetcode 64. 最小路径和 给定一个包含非负整数 ...
- LeetCode 64. 最小路径和(Minimum Path Sum) 20
64. 最小路径和 64. Minimum Path Sum 题目描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明: 每次只能向下或 ...
- Java实现 LeetCode 64 最小路径和
64. 最小路径和 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], ...
- [LeetCode] 64. 最小路径和 ☆☆☆(动态规划)
描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入:[ [1,3,1], [1,5,1 ...
- [LeetCode]64. 最小路径和(DP)
题目 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4 ...
- Leetcode——64. 最小路径和
题目描述:题目链接 同样对于这个问题,我们可以考虑用动态规划来解决. 解决动态规划常见的三个步骤: 1:问题的归纳.对于 i,j 位置上的最短路径可以用d[ i ][ j ]表示. 2:归纳递推式:d ...
- leetcode 64. 最小路径和Minimum Path Sum
很典型的动态规划题目 C++解法一:空间复杂度n2 class Solution { public: int minPathSum(vector<vector<int>>&am ...
- Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)
Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...
- Leetcode题目64.最小路径和(动态规划-中等)
题目描述: 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], [1, ...
随机推荐
- Ethical Hacking - NETWORK PENETRATION TESTING(19)
MITM-DNS Spoofing DNS Spoofing allows us to redirect any request to a certain domain to another doma ...
- 【Nginx】面试官问我Nginx能不能配置WebSocket?我给他现场演示了一番!!
写在前面 当今互联网领域,不管是APP还是H5,不管是微信端还是小程序,只要是一款像样点的产品,为了增加用户的交互感和用户粘度,多多少少都会涉及到聊天功能.而对于Web端与H5来说,实现聊天最简单的就 ...
- MapReduce之MapTask工作机制
1. 阶段定义 MapTask:map----->sort map:Mapper.map()中将输出的key-value写出之前 sort:Mapper.map()中将输出的key-value写 ...
- layui 数据表格自带的导出Excel,身份证等E+/000问题解决
layui数据表格的工具栏自带导出Excel 会将身份证等 长整数的 自动变成E+并且 后面有000.从而导致数据不能完整导出. 解决方案: 1.先下载Excel的插件包.将压缩包内的两个js放到 l ...
- Windows下安装Python 3.X 版本
一. Python下载 Python官方下载地址 演示下载的版本为Python 3.8.3 ,你可以根据自己的选择安装其他版本的Python 二. Python 安装 下载完安装包双击安装时出错(Wi ...
- 跟老刘学运维day02~新手必须掌握的Linux命令(2)
第2章 Linux命令 1.Shell 计算机硬件:由运算器.控制器.存储器.输入/输出设备等共同组成 Shell:人与硬件的翻译官,人要想使用硬件,需要服务程序 Bash四大好处: (1)通过上下方 ...
- 记一次css字体反爬
前段时间在看css反爬的时候,发现很多网站都做了css反爬,比如,设置字体反爬的(58同城租房版块,实习僧招聘https://www.shixiseng.com/等)设置雪碧图反爬的(自如租房http ...
- Zabbix-server自动发现,批量添加主机,并链接模板
zabbix可以手动添加agent客户端,当主机数量比较多时,这时手工重复工作会大大增加.zabbix的自动发现功能可以帮我们解决这个问题. 准备条件: 1. 被监控主机都装上zabbix-agent ...
- Python for循环使用 else 语句
Python for循环使用 else 语句: else:当 for 所有的语句代码块正常运行完,才会运行 else 语句. 示例: ''' for 迭代对象 in 序列: 代码块(一行语句或多行代码 ...
- 定义 WSGI 接口
# WSGI服务器调用 def application(environ,start_response): start_response('200 OK',[('Content-Type','text/ ...