luogu P4321 随机漫游 期望dp 二进制 高斯消元
LINK:随机漫游
非常妙的一道题。
容易想到倒推期望。
设状态 f[i][j]表示到达第i个点 此时已经到达的集合为j能走到全集的期望边数。
只要求出来这个就能O(1)回答询问。
\(f[i][j]=1+\sum_{v\in son_x,v\notin j}\frac{1}{d_i}f[i][j|v]+\sum_{v\in son_x,v\in j}\frac{1}{d_i}f[i][j]\)
有了这个东西 显然可以\((2^n\cdot n)^3\)暴力高斯消元了。
考虑优化 容易发现如果按照二进制的大小倒着推这个东西 那么前面那个部分完全已知了。
这样我们每次的方程最多n个 总复杂度\(2^n\cdot n^3\)
需要卡卡常数 如 消的时候d==0可以直接break了。
const ll MAXN=19;
ll f[MAXN][1<<MAXN];//f[i][j]表示到达i这个点此时集合为j还需要跑多少才能得到全集的期望边数.
ll n,m,Q;
ll a[MAXN][MAXN],d[MAXN];
ll b[MAXN][MAXN],g[MAXN];
inline ll ksm(ll b,ll p){ll cnt=1;while(p){if(p&1)cnt=(ll)cnt*b%mod;b=(ll)b*b%mod;p=p>>1;}return cnt;}
inline void GAUSS()
{
rep(1,n,i)
{
ll p=i;
rep(i,n,j)if(b[j][i]){p=j;break;}
if(p!=i){rep(1,n,j)swap(b[i][j],b[p][j]);swap(g[i],g[p]);}
ll ww=ksm(b[i][i],mod-2);
rep(1,n,j)
{
if(i==j)continue;
ll d=ww*b[j][i]%mod;
if(!d)continue;
rep(1,n,k)b[j][k]=(b[j][k]-b[i][k]*d)%mod;
g[j]=(g[j]-g[i]*d)%mod;
}
}
rep(1,n,i)g[i]=g[i]*ksm(b[i][i],mod-2)%mod;
}
signed main()
{
freopen("1.in","r",stdin);
get(n);get(m);
rep(1,m,i)
{
ll get(x),get(y);
a[x][y]=a[y][x]=1;
++d[x];++d[y];
}
rep(1,n,i)d[i]=ksm(d[i],mod-2);
ll maxx=(1<<n)-1;
fep(maxx-1,1,j)
{
//求出每个f[i][j].
rep(1,n,i)
{
b[i][i]=1;g[i]=0;
if(j&(1<<(i-1)))
{
++g[i];
rep(1,n,k)
{
if(a[i][k])
{
if(!(j&(1<<(k-1))))g[i]=(g[i]+d[i]*f[k][j|(1<<(k-1))])%mod;
else b[i][k]=(b[i][k]-d[i])%mod;
}
}
}
}
GAUSS();
rep(1,n,i)f[i][j]=(g[i]+mod)%mod;
}
get(Q);
rep(1,Q,i)
{
ll st,s=0,get(x);
rep(1,x,i)
{
ll get(y);
s=s|(1<<(y-1));
}
get(st);
putl(f[st][(maxx^s)|(1<<(st-1))]);
}
return 0;
}
luogu P4321 随机漫游 期望dp 二进制 高斯消元的更多相关文章
- HDU 4418 Time travel 期望dp+dfs+高斯消元
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4418 Time travel Time Limit: 2000/1000 MS (Java/Othe ...
- BZOJ 3143 Luogu P3232 [HNOI2013]游走 (DP、高斯消元)
题目链接: (bzoj) https://www.lydsy.com/JudgeOnline/problem.php?id=3143 (luogu) https://www.luogu.org/pro ...
- Luogu P4321 随机漫游
期望DP要倒着推 Luogu P4321 题意 LOJ #2542 不一定是树,询问点不一定均为1 $Solution$ 设计一个巧妙的DP状态 设$ F(S,x)$表示当前在点$ x$已经走遍了$ ...
- BZOJ2707 [SDOI2012]走迷宫 【概率dp + tarjan + 高斯消元】
题目 Morenan被困在了一个迷宫里.迷宫可以视为N个点M条边的有向图,其中Morenan处于起点S,迷宫的终点设为T.可惜的是,Morenan非常的脑小,他只会从一个点出发随机沿着一条从该点出发的 ...
- 【JLOI 2012】时间流逝(期望,树上高斯消元)
题目链接 这是一道传统的期望题,可是有一些套路值得我去掌握. 我们用$s$来表示一种状态,就是当前拥有的能量圈,是一个正整数拆分的形式. 用$f_{s}$表示如果遇到果冻鱼后丢掉了最小的能量圈后的状态 ...
- 【BZOJ 2337】 2337: [HNOI2011]XOR和路径(概率DP、高斯消元)
2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1170 Solved: 683 Description ...
- hdu4418(概率dp + 高斯消元)
应该是一个入门级别的题目. 但是有几个坑点. 1. 只选择x能到达的点作为guass中的未知数. 2. m可能大于n,所以在构建方程组时未知数的系数不能直接等于,要+= 3.题意貌似说的有问题,D为- ...
- 【Luogu】P4035球形空间产生器(高斯消元)
题目链接 水比题,把圆方程展开减一下把平方都减掉半径的平方也减掉,高斯消元即可. 然后我只输出两位小数,爆了两次零.我好菜啊. #include<cstdio> #include<c ...
- 【Luogu】P2447外星千足虫(高斯消元)
题目链接 高斯消元解%2意义下的方程,Bitset优化一下. 在消的过程中就能顺便把有解的第一问求出来,记录一下访问过的最大行. #include<cstdio> #include< ...
随机推荐
- Html5中input新增的表单元素和属性介绍。
input标签主要用于Web表单的创建交互,以便接受来自用户的数据. 我们通过更改type属性的值,来实现不同的输入类型.在以前的写法中表单元素必须放在form元素所包含的里面,而在html5中,我们 ...
- js创建函数的方式
一般一下这三种方式 第一种(函数声明): function sum1(num1,num2){ return num1+num2;} 没啥好说的 第二种(函数表达式): var sum2 = fun ...
- BZOJ 1294 围豆豆 题解
题目 是不是平时在手机里玩吃豆豆游戏玩腻了呢?最近MOKIA手机上推出了一种新的围豆豆游戏,大家一起来试一试吧. 游戏的规则非常简单,在一个N×M的矩阵方格内分布着D颗豆子,每颗豆有不同的分值Vi.游 ...
- 宁波市第三届网络安全大赛-WriteUp(Misc)
友情链接 Web师傅:skyxmao师傅 内心OS 第一次参加这种大型比赛,实力较菜,请师傅们多多指点 Misc | 完成 | 第一 下载文件,看一下doc没有任何问题, 没有发现任何隐写,然后修改文 ...
- Mysql 常用语句实战(2)
前置 sql 语句 用来创建表.插入数据 SET NAMES utf8mb4; SET FOREIGN_KEY_CHECKS = 0; -- ---------------------------- ...
- order by 注入姿势
order by 注入原理 其实orde by 注入也是sql注入的一种,原理都一样就是mysql语法的区别,order by是用来排序的语法. sql-lab讲解 判断方法 1.通过做运算来判断如: ...
- scala 数据结构(二):数组
1 数组-定长数组(声明泛型) 第一种方式定义数组 这里的数组等同于Java中的数组,中括号的类型就是数组的类型 val arr1 = new Array[Int](10) //赋值,集合元素采用小括 ...
- 数据可视化之powerBI入门(七)数据清洗中最常使用的十三招
https://mp.weixin.qq.com/s?__biz=MzA4MzQwMjY4MA==&mid=2484067158&idx=1&sn=4ad955112df2f4 ...
- Python 图像处理 OpenCV (14):图像金字塔
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- 05-Python模块
一.简介 模块是一个包含所有你定义的函数和变量的文件,其后缀名是.py.模块可以被其他程序导入来使用模块具有的功能.这也是使用python标准库的方式. import time start_time ...