LINK:calc

容易得到一个nk的dp做法 同时发现走不通了 此时可以考虑暴力生成函数。

不过化简那套不太熟 且最后需要求多项式幂级数及多项式exp等难写的东西。

这里考虑观察优化dp的做法。

不容易看出 f(n,k)是关于k的2n+1次多项式。

证明可以用数学归纳法证明 且还可以从非常规律的转移中看出这应该是一个形似多项式的东西。

可以直接O(n)拉格朗日插值 不过这里懒得写因为 外面dp是\(n^2\)求点值的所以这里没必要O(n).

注意初始化.

const ll MAXN=1010;
ll n,mod,k;
ll f[MAXN][MAXN];
ll x[MAXN],y[MAXN];
inline ll ksm(ll b,ll p)
{
ll cnt=1;
while(p)
{
if(p&1)cnt=cnt*b%mod;
p=p>>1;b=b*b%mod;
}
return cnt;
}
inline ll lagrange(ll m,ll z)
{
rep(1,m,i)x[i]=i,y[i]=f[n][i];
ll ans=0;
rep(1,m,i)
{
ll cnt1=1,cnt2=1;
rep(1,m,j)if(i!=j)cnt1=(cnt1*(z-x[j]))%mod,cnt2=(cnt2*(x[i]-x[j]))%mod;
cnt2=ksm(cnt2,mod-2);
cnt1=cnt1*cnt2%mod*y[i]%mod;
ans=(ans+cnt1)%mod;
}
return (ans+mod)%mod;
}
signed main()
{
freopen("1.in","r",stdin);
get(k);get(n);get(mod);ll ans=1;
rep(0,(n<<1|1),j)f[0][j]=1;
rep(1,n,i)
{
ans=ans*i%mod;
rep(1,min(k,(n<<1|1)),j)f[i][j]=(j*f[i-1][j-1]+f[i][j-1])%mod;
}
if(k<=(n<<1|1))putl(ans*f[n][k]%mod);
else putl(lagrange(n<<1|1,k)*ans%mod);
return 0;
}

P4463 [集训队互测2012] calc 拉格朗日插值 dp 多项式分析的更多相关文章

  1. 洛谷 P4463 - [集训队互测 2012] calc(多项式)

    题面传送门 & 加强版题面传送门 竟然能独立做出 jxd 互测的题(及其加强版),震撼震撼(((故写题解以祭之 首先由于 \(a_1,a_2,\cdots,a_n\) 互不相同,故可以考虑求出 ...

  2. [JZOJ2865]【集训队互测 2012】Attack

    题目 题目大意 平面上有一堆带权值的点.两种操作:交换两个点的权值,查找一个矩形的第\(k\)小 \(N<=60000\) \(M<=10000\) \(10000ms\) 思考历程&am ...

  3. [JZOJ2866] 【集训队互测 2012】Bomb

    题目 题目大意 给你一个有\(n\)个点的平面. 选择三个点,求两两之间曼哈顿距离和的最大值和最小值. 思考历程&正解 比赛的时候没有想太多,但感觉似乎比较水-- 首先有个很显然的性质,答案为 ...

  4. 【loj2461】【2018集训队互测Day 1】完美的队列

    #2461. 「2018 集训队互测 Day 1」完美的队列 传送门: https://loj.ac/problem/2461 题解: 直接做可能一次操作加入队列同时会弹出很多数字,无法维护:一个操作 ...

  5. 【2018集训队互测】【XSY3372】取石子

    题目来源:2018集训队互测 Round17 T2 题意: 题解: 显然我是不可能想出来的……但是觉得这题题解太神了就来搬(chao)一下……Orzpyz! 显然不会无解…… 为了方便计算石子个数,在 ...

  6. [JZOJ6088] [BZOJ5376] [loj #2463]【2018集训队互测Day 1】完美的旅行【线性递推】【多项式】【FWT】

    Description Solution 我们考虑将问题一步步拆解 第一步求出\(F_{S,i}\)表示一次旅行按位与的值为S,走了i步的方案数. 第二步答案是\(F_{S,i}\)的二维重复卷积,记 ...

  7. bzoj 2655 calc —— 拉格朗日插值

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先设 f[i][j] 表示长度为 i 的序列,范围是 1~j 的答案: 则 f[i][ ...

  8. BZOJ 2655: calc(拉格朗日插值)

    传送门 解题思路 首先比较容易能想到\(dp\),设\(f[i][j]\)表示前\(j\)个数,每个数\(<=i\)的答案,那么有转移方程:\(f[i][j]=f[i-1][j-1]*i*j+f ...

  9. Wannafly Winter Camp 2020 Day 5F Inversion Pairs - 拉格朗日插值,dp

    给定 \(n \leq 10^7\),求所有 \(n\) 的全排列的逆序对个数的 \(k \leq 100\) 次方和 Solution \(f[i][j]\) 表示 \(i\) 个元素,逆序对个数为 ...

随机推荐

  1. 如何写出高性能的CSS3动画

    小伙伴们在写CSS3动画时,会发现在手机上很多时候会感到卡顿,然后Google到的解决方案大多是开启GPU加速transform: translate3d(0,0,0); 可解决,但是为什么开启GPU ...

  2. hbase2.1.9 centos7 完全分布式 搭建随记

    hbase2.1.9 centos7 完全分布式 搭建随记 这里是当初在三个ECS节点上搭建hadoop+zookeeper+hbase+solr的主要步骤,文章内容未经过润色,请参考的同学搭配其他博 ...

  3. stb_image multiple definition of first defined here 多文件包含问题

    首先吐槽一下,网上的其他的一些内容都是瞎写,根本没有指出问题的根本原因,使用时出现异常情况不能自己解决也说明了C语言基础不牢固, 该头文件可以分为两种情况使用(推荐使用办法2,办法1中有解释原因)(任 ...

  4. SaaS 系统架构,Spring Boot 动态数据源实现!

    这段时候在准备从零开始做一套SaaS系统,之前的经验都是开发单数据库系统并没有接触过SaaS系统,所以接到这个任务的时候也有也些头疼,不过办法部比困难多,难得的机会. 在网上找了很多关于SaaS的资料 ...

  5. 小程序报错 parameter.content should be String instead of Undefined;

    自己遇到了两种情况会导致这个问题 1.参数名写错未定义,然后赋值的时候值为undefined 2.服务端返回的值错误,返回的值为空,导致赋值时报错 解决方法: 1.检查参数名,如不是全局变量的应在da ...

  6. python-----内存管理机制

    一.深浅拷贝的区别 深浅拷贝一般是在列表嵌套列表的情况下去讨论 浅拷贝:只拷贝列表中对象的引用,嵌套列表中的数据是不会进行全部拷贝的 深拷贝:会把对象里面所有的数据都拷贝一份,不再只拷贝对象的引用,会 ...

  7. WPF基于.Net Core

    WPF基于.Net Core 因为最近.net core的热门,所以想实现一下.net core框架下的WPF项目,还是MVVM模式,下面就开始吧,简单做一个计算器吧. 使用VS2019作为开发工具 ...

  8. requests接口自动化6-Body里json格式数据形式的post请求:json

    Body里json格式数据形式的post请求:用json传参 fiddler里请求响应内容: 传递的json数据 [{"stepId":"0","ca ...

  9. 使用Xshell的rz命令上传文件失败的解决方法

    使用Xshell的rz命令上传文件失败的解决方法 第一种:在home目录下rz上传文件失败,如下: 原因:当前用户不具备权限解决:用 sudo rz 上传即可成功 第二种:对于文件大的rz上传失败的话 ...

  10. java IO流 (八) RandomAccessFile的使用

    1.随机存取文件流:RandomAccessFile 2.使用说明: * 1.RandomAccessFile直接继承于java.lang.Object类,实现了DataInput和DataOutpu ...