[问题2015S06] 复旦高等代数 II(14级)每周一题(第七教学周)
[问题2015S06] 设 \(V\) 是数域 \(\mathbb{K}\) 上的 \(n\) 维线性空间, \(\varphi\) 是 \(V\) 上的线性变换.
(1) 求证: 对任一非零向量 \(\alpha\in V\), \(U=L(\alpha,\varphi(\alpha),\varphi^2(\alpha),\cdots)\) 是包含 \(\alpha\) 的最小的 \(\varphi\)-不变子空间. 子空间 \(U\) 称为 \(\alpha\) 关于 \(\varphi\) 的循环子空间, \(\alpha\) 称为循环子空间 \(U\) 的循环向量. 若设 \(\dim U=m\), 则 \(\{\alpha,\varphi(\alpha),\cdots,\varphi^{m-1}(\alpha)\}\) 是 \(U\) 的一组基.
(2) 利用 (1) 的结论证明 Cayley-Hamilton 定理.
(3) 求证: \(V\) 只有平凡的 \(\varphi\)-不变子空间当且仅当对任一非零向量 \(\alpha\in V\), \(\alpha\) 关于 \(\varphi\) 的循环子空间等于 \(V\).
(4) 证明: \(V\) 只有平凡的 \(\varphi\)-不变子空间当且仅当 \(\varphi\) 的特征多项式 \(f(\lambda)=|\lambda I_V-\varphi|\) 是 \(\mathbb{K}\) 上的不可约多项式.
问题解答请在以下网址下载:http://pan.baidu.com/share/home?uk=103502710#category/type=0
[问题2015S06] 复旦高等代数 II(14级)每周一题(第七教学周)的更多相关文章
- [问题2015S01] 复旦高等代数 II(14级)每周一题(第二教学周)
[问题2015S01] 设 \(M_n(\mathbb{R})\) 是 \(n\) 阶实方阵全体构成的实线性空间, \(\varphi\) 是 \(M_n(\mathbb{R})\) 上的线性变换, ...
- [问题2015S08] 复旦高等代数 II(14级)每周一题(第九教学周)
[问题2015S08] 设 \(A\) 为 \(n\) 阶复方阵, 证明: \(A\overline{A}\) 与 \(\overline{A}A\) 相似, 其中 \(\overline{A}\) ...
- [问题2014S01] 复旦高等代数II(13级)每周一题(第一教学周)
问题2014S01 设 \(f(x_1,x_2,\cdots,x_n)\) 是次数等于 2 的 \(n\) 元实系数多项式, \(S\) 是使得 \(f(x_1,x_2,\cdots,x_n)\) ...
- [问题2014S09] 复旦高等代数II(13级)每周一题(第九教学周)
[问题2014S09] 证明: \(n\) 阶方阵 \(A\) 与所有的 \(A^m\,(m\geq 1)\) 都相似的充分必要条件是 \(A\) 的 Jordan 标准型为 \[\mathrm{d ...
- [问题2014A07] 复旦高等代数 I(14级)每周一题(第九教学周)
[问题2014A07] 设 \(A\) 是有理数域 \(\mathbb{Q}\) 上的 4 阶方阵, \(\alpha_1,\alpha_2,\alpha_3,\alpha_4\) 是 \(\mat ...
- [问题2014S02] 复旦高等代数II(13级)每周一题(第二教学周)
问题2014S02 设实系数多项式 \begin{eqnarray*}f(x) &=& a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0, \\ g(x) ...
- [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)
[问题2014S12] 设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...
- 复旦高等代数 II(17级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1道思考题(共16道),供大家思考和解答.每周一题通过“ ...
- 复旦高等代数II(18级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十五教学周结束,每周的周末公布一道思考题(预计15道),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博文的形式)和“高等代 ...
随机推荐
- SpringBoot项目部署与服务配置
spring Boot 其默认是集成web容器的,启动方式由像普通Java程序一样,main函数入口启动.其内置Tomcat容器或Jetty容器,具体由配置来决定(默认Tomcat).当然你也可以将项 ...
- 平方和和立方和_hdu2007
#include <stdio.h>int main(){ int a, b, m , n, t; while( scanf("%d %d", &a, &am ...
- BizTalk开发系列(三十六) Orchestration单实例执行
BizTalk 是高效的消息处理引擎,采用多线程并发的方式来处理消息.也就是说当有消息被接收的时候就会产生一个新的消息处理实例.但有时目标系统可能并没有并发处理 的能力, 这时就需要在BizTalk中 ...
- Android课程---final关键字
final 在Java中声明属性.方法和类时,可使用关键字final来修饰. final变量即为常量,只能赋值一次: final方法不能被子类重写: final ...
- 杭电ACM 1201
#include <stdio.h> int func(int year){ if ( year % 400 == 0 || (year % 4 == 0 &&year % ...
- 虚拟机安装Macintosh探索
想跟virtualbox安装一个mac os,在pcbeta找到网友分享的原版镜像,挂载安装,结果在安装的时候不是卡在进入界面,就是不停地安装,显然没有那么简单.virtualbox 在用户手册写着支 ...
- Git subtree和Git submodule
git submodule允许其他的仓库指定以一个commit嵌入仓库的子目录. git subtree替代git submodule命令,合并子仓库到项目中的子目录.不用像submodule那样每次 ...
- QTreeWidget
#include "dialog.h" #include "ui_dialog.h" #include<QtCore> #include<Qt ...
- java 虚拟机--新生代与老年代GC
Heap: JVM只有一个为所有线程所共享的堆,所有的类实例和数组都是在堆中创建的. Method area: JVM只有一个为所有的线程所共享的方法区.它存储类结构,例如运行时常量池,成员和方法数据 ...
- js-方法
最近觉得自己的基础貌似太薄弱了,找了几本电子书,整理了一下基础的 方法: Concat:返回一个新数组 var a=['a','b','c']; var b=['x','y','z']; var c= ...