题意:现在给以一棵$n$个结点的树,并给你$2k$个结点,现在要求你把这些节点互相配对,使得互相配对的节点之间的距离(路径上经过边的数目)之和最大。数据范围$1 \leq n \leq 200000, 2k \leq n$。

分析:贪心选择距离最大、次大...的结点对?貌似不对。暴力枚举所有可能?对但不可行。考虑节点对之间的距离实际上就是它们到LCA距离之和。因此单独考虑每个结点,它对答案的贡献实际上就是它到与其匹配节点的LCA的距离,这个距离必然不超过它到根的距离。如果我们有一种方法使得每个结点对答案的贡献都等于这个上界就好了,那么答案就是所有标记节点到根的距离之和。注意,要满足这个要求,与其匹配的结点应该和它不在根的同一个子树中,考虑根节点的各个子树中的标记节点,如果满足标记节点个数最多的子树不超过其余子树标记节点个数之和,那么是存在某种配对方法是得相互配对的节点分属不同子树的。即要求子树最大重量(含标记节点数目)不超过$k$即可(容易证明,讨论一下根是否是标记节点)。那么我们只需要对原图进行一次dfs找出这样的结点,并返回该节点作为根,再次dfs找出所有标记节点到根的距离之和即使答案。可以确定一定能够找到这样的根(提供一种证明思路,归纳法)。这样这道题可以在$O(n)$时间内解出。代码如下:

 #include <algorithm>
 #include <cstdio>
 #include <cstring>
 #include <string>
 #include <queue>
 #include <map>
 #include <set>
 #include <stack>
 #include <ctime>
 #include <cmath>
 #include <iostream>
 #include <assert.h>
 #pragma comment(linker, "/STACK:102400000,102400000")
 #define max(a, b) ((a) > (b) ? (a) : (b))
 #define min(a, b) ((a) < (b) ? (a) : (b))
 #define mp std :: make_pair
 #define st first
 #define nd second
 #define keyn (root->ch[1]->ch[0])
 #define lson (u << 1)
 #define rson (u << 1 | 1)
 #define pii std :: pair<int, int>
 #define pll pair<ll, ll>
 #define pb push_back
 #define type(x) __typeof(x.begin())
 #define foreach(i, j) for(type(j)i = j.begin(); i != j.end(); i++)
 #define FOR(i, s, t) for(int i = (s); i <= (t); i++)
 #define ROF(i, t, s) for(int i = (t); i >= (s); i--)
 #define dbg(x) std::cout << x << std::endl
 #define dbg2(x, y) std::cout << x << " " << y << std::endl
 #define clr(x, i) memset(x, (i), sizeof(x))
 #define maximize(x, y) x = max((x), (y))
 #define minimize(x, y) x = min((x), (y))
 using namespace std;
 typedef long long ll;
 const int int_inf = 0x3f3f3f3f;
 const ll ll_inf = 0x3f3f3f3f3f3f3f3f;
 ) - );
 const double double_inf = 1e30;
 ;
 typedef unsigned long long ul;
 typedef unsigned int ui;
 inline int readint(){
     int x;
     scanf("%d", &x);
     return x;
 }
 inline int readstr(char *s){
     scanf("%s", s);
     return strlen(s);
 }

 class cmpt{
 public:
     bool operator () (const int &x, const int &y) const{
         return x > y;
     }
 };

 int Rand(int x, int o){
     //if o set, return [1, x], else return [0, x - 1]
     ;
     int tem = (int)((double)rand() / RAND_MAX * x) % x;
      : tem;
 }
 ll ll_rand(ll x, int o){
     ;
     ll tem = (ll)((double)rand() / RAND_MAX * x) % x;
      : tem;
 }

 void data_gen(){
     srand(time());
     freopen("in.txt", "w", stdout);
     ;
     printf("%d\n", kases);
     while(kases--){
         ll sz = 1e18;
         printf());
     }
 }

 struct cmpx{
     bool operator () (int x, int y) { return x > y; }
 };
 ;
 int n, k;
 bool np[maxn];
 struct E{
     int to, nex;
 }e[maxn << ];
 int head[maxn], N;
 void addE(int x, int y){
     e[N].nex = head[x];
     e[N].to = y;
     head[x] = N++;
     e[N].nex = head[y];
     e[N].to = x;
     head[y] = N++;
 }
 int cnt[maxn];
 void dfs1(int u, int fa){
     cnt[u] = np[u];
     for(int i = head[u]; ~i; i = e[i].nex){
         int v = e[i].to;
         if(v == fa) continue;
         dfs1(v, u);
         cnt[u] += cnt[v];
     }
 }
 int rt;
 bool flag;
 void dfs2(int u, int fa){
     if(flag) return;
     ;
     ;
     for(int i = head[u]; ~i; i = e[i].nex){
         int v = e[i].to;
         if(v == fa) continue;
         maximize(maxi, cnt[v]);
         tot += cnt[v];
     }
     if(np[u]) ++tot;
     maximize(maxi,  * k - tot);
     if(maxi <= k){
         rt = u;
         flag = ;
         return;
     }
     for(int i = head[u]; ~i; i = e[i].nex) if(e[i].to != fa) dfs2(e[i].to, u);
 }
 ll dfs3(int u, int fa, int d){
     ll tem = ;
     if(np[u]) tem += d;
     for(int i = head[u]; ~i; i = e[i].nex){
         int v = e[i].to;
         if(v == fa) continue;
         tem += dfs3(v, u, d + );
     }
     return tem;
 }
 int main(){
     //data_gen(); return 0;
     //C(); return 0;
     ;
     if(debug) freopen("in.txt", "r", stdin);
     //freopen("out.txt", "w", stdout);
     while(~scanf("%d", &n)){
         k = readint();
         clr(np, );
         FOR(i, ,  * k) np[readint()] = ;
         N = , clr(head, -);
         FOR(i, , n){
             int x = readint(), y = readint();
             addE(x, y);
         }
         dfs1(, -);
         rt = ;
         flag = ;
         dfs2(, -);
         ll ans = dfs3(rt, -, );
         printf("%lld\n", ans);
     }
     ;
 }

code:

cf 700 B Connecting Universities的更多相关文章

  1. cf 701 E - Connecting Universities

    Descrition 给你一颗\(n\le 2*10^5\)个点的树, 有\(2*k(2k\le n)\)座大学座落在点上 (任二大学不在同一个点) 求一种两两匹配的方案, 使得距离和最大 即\[ma ...

  2. Codeforces Round #364 (Div. 2) E. Connecting Universities

    E. Connecting Universities time limit per test 3 seconds memory limit per test 256 megabytes input s ...

  3. Connecting Universities

    Connecting Universities Treeland is a country in which there are n towns connected by n - 1 two-way ...

  4. Codeforces Round #364 (Div. 2) E. Connecting Universities (DFS)

    E. Connecting Universities time limit per test 3 seconds memory limit per test 256 megabytes input s ...

  5. codeforces 701E E. Connecting Universities(树的重心)

    题目链接: E. Connecting Universities time limit per test 3 seconds memory limit per test 256 megabytes i ...

  6. Codeforces 701E Connecting Universities 贪心

    链接 Codeforces 701E Connecting Universities 题意 n个点的树,给你2*K个点,分成K对,使得两两之间的距离和最大 思路 贪心,思路挺巧妙的.首先dfs一遍记录 ...

  7. Codeforces 700B Connecting Universities(树形DP)

    [题目链接] http://codeforces.com/problemset/problem/700/B [题目大意] 给出 一棵n个节点的树, 现在在这棵树上选取2*k个点,两两配对,使得其配对的 ...

  8. Codeforces 700B Connecting Universities - 贪心

    Treeland is a country in which there are n towns connected by n - 1 two-way road such that it's poss ...

  9. cf701E Connecting Universities

    Treeland is a country in which there are n towns connected by n - 1 two-way road such that it's poss ...

随机推荐

  1. ASPCMS标签教程

    导航栏调用{aspcms:navlist type=0}    <a href="[navlist:link]">[navlist:name]</a>{/a ...

  2. Hibernate HQL的update方法详解

    虽然hibernate提供了许多方法对数据库进行更新,但是这的确不能满足开发需要.现在讲解一下用hql语句对数据进行更新. 不使用参数绑定格式String hql="update User ...

  3. 对Oracle数据库坏块的理解

    1.物理坏块和逻辑坏块 在数据库中有一个概念叫做数据块的一致性,Oracle的数据块的一致性包括了两个层次:物理一致性和逻辑一致性,如果一个数据块在这两个层次上存在不一致性,那就对应到了我们今天要要说 ...

  4. DEDECMS里面DEDE函数解析

    下面来解说下DEDECMS织梦CMS模板里面的函数说明 在文件include/inc_function.php里面 GetCurUrl() 获贴切前的脚本的URL GetAlabNum($str) 把 ...

  5. 对struct和class使用大括号初始化的测试

    #include <iostream> using namespace std; struct struct1{ /* struct1(){ cout<<"this ...

  6. 利用.htaccess实现伪静态方法

    首先配置服务器启动重写模块打开 Apache 的配置文件 httpd.conf .将#LoadModule rewrite_module modules/mod_rewrite前面的#去掉.保存后重启 ...

  7. poj2305-Basic remains(进制转换 + 大整数取模)

    进制转换 + 大整数取模一,题意: 在b进制下,求p%m,再装换成b进制输出. 其中p为b进制大数1000位以内,m为b进制数9位以内二,思路: 1,以字符串的形式输入p,m; 2,转换:字符串-&g ...

  8. window常见事件

    <script type="text/javascript"> /*onunload = function(){ alert("onunload run&qu ...

  9. python 安装 twisted 库

    pip 安装twisted库需要先安装依赖包,不然报"error: command 'gcc' failed with exit status 1" # yum install g ...

  10. ExtJS笔记 Grids

    参考:http://blog.csdn.net/zhangxin09/article/details/6885175 The Grid Panel is one of the centerpieces ...