[问题2014S09] 解答
[问题2014S09] 解答
充分性: 先证明对 Jordan 块 \(J_r(1)\) 以及任意的正整数 \(m\), 均有 \(J_r(1)^m\) 相似于 \(J_r(1)\). 设 \(N=J_r(0)\), 则 \(J_r(1)=I+N\). 从而 \[J_r(1)^m=(I+N)^m=I+mN+\sum_{i=2}^mC_m^iN^i,\] 这是一个上三角阵, 主对角线上的元素全为 \(1\), 上次对角线上的元素全为 \(m\geq 1\). 因此 \(J_r(1)^m\) 的特征值全为 \(1\), 且特征值 \(1\) 的几何重数为 \(r-\mathrm{rank}(J_r(1)^m-I)=r-(r-1)=1\), 故 \(J_r(1)^m\) 关于特征值 \(1\) 的 Jordan 块只有一个, 即 \(J_r(1)^m\) 相似于 \(J_r(1)\). 由假设 \(A\) 的 Jordan 标准型为 \[\mathrm{diag}\{J_{r_1}(1),\cdots,J_{r_k}(1),0,\cdots,0\},\] 故 \(A^m\) 相似于 \[\mathrm{diag}\{ J_{r_1}(1)^m,\cdots,J_{r_k}(1)^m,0,\cdots,0 \},\] 从而相似于 \[\mathrm{diag}\{J_{r_1}(1),\cdots,J_{r_k}(1),0,\cdots,0\}.\] 因此对任意正整数 \(m\), \(A^m\) 相似于 \(A\).
必要性: 先证明 \(A\) 的特征值只能是 \(1\) 或 \(0\). 设 \(A\) 的全体特征值为 \(S=\{ \lambda_1,\lambda_2,\cdots,\lambda_n \}\), 则 \(A^m\) 的全体特征值为 \(S^m=\{\lambda_1^m,\lambda_2^m,\cdots,\lambda_n^m\}\). 由假设 \(A\) 与 \(A^m\,(m\geq 1)\) 相似, 因此 \(S\) 与 \(S^m\,(m\geq 1)\) 作为集合 (其中元素计重数但不计次序) 是相同的. 对于任一 \(\lambda_i\), 注意到 \(\{\lambda_i,\lambda_i^2,\cdots\}\) 都是 \(A\) 的特征值, 但 \(A\) 的特征值只有 \(n\) 个, 故存在正整数 \(r>s\) 使得 \(\lambda_i^r=\lambda_i^s\), 从而 \(\lambda_i=0\) 或者 \(\lambda_i^{r-s}=1\). 因此对任意的 \(1\leq i\leq n\), 或者 \(\lambda_i=0\), 或者存在正整数 \(m_i\) 使得 \(\lambda_i^{m_i}=1\). 令 \(M=\mathrm{lcm}\{m_i\,|\,\lambda_i\neq 0\}\), 则 \[S=S^M=\{\lambda_1^M,\lambda_2^M,\cdots,\lambda_n^M\}=\{1,\cdots,1,0,\cdots,0\}.\] 设 \(A\) 的 Jordan 标准型为 \[\mathrm{diag}\{J_{r_1}(1),\cdots,J_{r_k}(1),J_{r_{k+1}}(0),\cdots,J_{r_s}(0)\},\] 其中 \(1\leq k\leq s\). 取 \(N=\max\{r_{k+1},\cdots,r_s\}\), 则由充分性的证明知, \(A^N\) 的 Jordan 标准型为 \[\mathrm{diag}\{J_{r_1}(1),\cdots,J_{r_k}(1),0,\cdots,0\}.\] 因为 \(A\) 与 \(A^N\) 相似, 故\(A\) 的 Jordan 标准型也为 \[\mathrm{diag}\{J_{r_1}(1),\cdots,J_{r_k}(1),0,\cdots,0\}. \quad\Box\]
[问题2014S09] 解答的更多相关文章
- 精选30道Java笔试题解答
转自:http://www.cnblogs.com/lanxuezaipiao/p/3371224.html 都 是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我 ...
- 精通Web Analytics 2.0 (8) 第六章:使用定性数据解答”为什么“的谜团
精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第六章:使用定性数据解答"为什么"的谜团 当我走进一家超市,我不希望员工会认出我或重新为我布置商店. 然而, ...
- 【字符编码】Java字符编码详细解答及问题探讨
一.前言 继上一篇写完字节编码内容后,现在分析在Java中各字符编码的问题,并且由这个问题,也引出了一个更有意思的问题,笔者也还没有找到这个问题的答案.也希望各位园友指点指点. 二.Java字符编码 ...
- spring-stutrs求解答
这里贴上applicationContext里的代码: <?xml version="1.0" encoding="UTF-8"?> <bea ...
- JavaScript Bind()趣味解答 包懂~~
首先声明一下,这个解答是从Segmentfault看到的,挺有意思就记录下来.我放到最下面: bind() https://developer.mozilla.org/zh-CN/docs/Web/J ...
- CMMI4级实践中的5个经典问题及解答
这五个问题相当经典而且比较深,需要做过CMMI4.5级的朋友才能看懂这些问题.这5个问题是一位正在实践CMMI4级的朋友提出来的,而解答则是我的个人见解. 五个疑问是: A.流程,子流程部分不明白 ...
- 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final
1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...
- 知乎大牛的关于JS解答
很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...
- [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)
[问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1) 当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...
随机推荐
- php Use of undefined constant的问题解决方式
在每个文件头上加 error_reporting(0); 或者 搜索php.ini: error_reporting = E_ALL 改为: error_reporting = E_ALL & ...
- JavaBean组件的基本使用-语法
<jsp:useBean id="实例化对象名称" scope="保存范围" class="包.类名"> </jsp:us ...
- Java Basic - Encapsulation
*** 封装 *** 面向对象特征 - 封装 封装的基本原则 将你的实例变量标记为私有的,比如提供公有的get与set方法来控制存取动作 有些get和set 可能什么事情也没做, 只是把值设给变量而已 ...
- XE5 ImageList的BUG?
今天做界面, 在imagelist里加载一个带有半透明通道的PNG图, 结果发现图片居然发暗, 如下: 原图: IDE里加载以后的图: 明显变暗...查询了源码, 无果 然后又用2010去测试, 发现 ...
- UIWebView如何获取内容高度
iOS UIWebView如何获取到内容的高度呢?我们经常会遇到项目中需要使用UIWebView来加载H5页面,但是页面的高度并不确定,而我们前端需要根据内容的高度呈现出来,且不允许webview滚动 ...
- Rewrite服务器和robots文件屏蔽动态页面
Rewrite服务器使用robots文件屏蔽动态页面.
- JQuery选择器中含有冒号的ID处理差异的分析
问题提出 对于一个输入框, 如果其id中含有冒号(:),选择器使用需要有特殊写法, 例如 id为下 <input type="text" value="ddd&qu ...
- Python 集合操作
1.集合操作 集合是一个无序的,不重复的数据组合, 他的主要作业如下. 1.去重,把一个列表变成集合,就自动去重了 2.关系测试,测试两组数据之前的交集.差集.并集等关系 list_1 = [1,4, ...
- RuntimeWarning: invalid value encountered in divide
import numpy as np olderr = np.seterr(all='ignore') 在程序的开头加上如上代码 https://docs.scipy.org/doc/numpy/re ...
- 搭建android开发环境
任何一个程序的开端都要从搭建开发环境开始,这样你就可以进行实战练习了,并且搭建完后即快速来一个项目HelloWorld, 哈哈,话不多说了,进入正题 android环境的安装主要分3步骤: 1.下载和 ...