Toy Storage
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5439   Accepted: 3234

Description

Mom and dad have a problem: their child, Reza, never puts his toys away when he is finished playing with them. They gave Reza a rectangular box to put his toys in. Unfortunately, Reza is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for Reza to find his favorite toys anymore. 
Reza's parents came up with the following idea. They put cardboard partitions into the box. Even if Reza keeps throwing his toys into the box, at least toys that get thrown into different partitions stay separate. The box looks like this from the top: 

We want for each positive integer t, such that there exists a partition with t toys, determine how many partitions have t, toys.

Input

The input consists of a number of cases. The first line consists of six integers n, m, x1, y1, x2, y2. The number of cardboards to form the partitions is n (0 < n <= 1000) and the number of toys is given in m (0 < m <= 1000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1, y1) and (x2, y2), respectively. The following n lines each consists of two integers Ui Li, indicating that the ends of the ith cardboard is at the coordinates (Ui, y1) and (Li, y2). You may assume that the cardboards do not intersect with each other. The next m lines each consists of two integers Xi Yi specifying where the ith toy has landed in the box. You may assume that no toy will land on a cardboard.

A line consisting of a single 0 terminates the input.

Output

For each box, first provide a header stating "Box" on a line of its own. After that, there will be one line of output per count (t > 0) of toys in a partition. The value t will be followed by a colon and a space, followed the number of partitions containing t toys. Output will be sorted in ascending order of t for each box.

Sample Input

4 10 0 10 100 0
20 20
80 80
60 60
40 40
5 10
15 10
95 10
25 10
65 10
75 10
35 10
45 10
55 10
85 10
5 6 0 10 60 0
4 3
15 30
3 1
6 8
10 10
2 1
2 8
1 5
5 5
40 10
7 9
0

Sample Output

Box
2: 5
Box
1: 4
2: 1

Source

我的“第一道”计算几何题=ω=

判断点在直线的哪一侧,机智地用了叉积

叉积同号代表在直线同侧,异号则在异侧,在直线上则为零。

//POJ 2398
//利用叉积判断点与直线位置关系
//C++11特性在ACM中不能用
//AC 2016.10.12 #include "cstdio"
#include "cstdlib"
#include "cmath"
#include "cstring"
#include "iostream"
#define MAXN 5010
#define MAXM 5010
using namespace std;
const double eps = 1E-8; int sgn(double x){
return (fabs(x)<eps)?0:((x>0)?1:-1);
} struct point{
double x, y;
point (){}
point (double X, double Y): x(X), y(Y){}
point operator - (const point &p){
return point(x - p.x, y - p.y);
}
double operator ^ (const point &p){
return x * p.y - y * p.x;
}
}toys[MAXM]; struct line {
point p1, p2;
line (){}
line (point P1, point P2): p1(P1), p2(P2) {}
}lines[MAXN]; template <typename T>
void swp(T &l1, T &l2){
T l = l1;
l1 = l2;
l2 = l;
} template <typename T>
void BubbleSort(T arr[], int n, bool (*cmp)(T, T)){
for (int i = 0; i < n; i++){
for (int j = 0; j < i; j++){
if (!cmp(arr[j], arr[i]))
swp<T>(arr[j], arr[i]);
}
}
} bool cmpline(line l1, line l2){
return l1.p1.x <= l2.p1.x;
} bool cmpint(int a, int b){
return a <= b;
} int n, m, X1, Y1, X2, Y2;
int ans[MAXN];
int main(){
freopen("fin.c", "r", stdin);
while (scanf("%d%d%d%d%d%d", &n, &m, &X1, &Y1, &X2, &Y2)){
if (!n) break;
puts("Box");
memset(ans, 0, sizeof (ans));
lines[0] = line(point(X1, Y1), point(X1, Y2));
for (int i = 1; i <= n; i++){
int u, l;
scanf("%d%d", &u, &l);
lines[i] = line(point(u, Y1), point(l, Y2));
}
lines[n + 1] = line(point(X2, Y1), point(X2, Y2));
BubbleSort<line>(lines, n + 2, cmpline);
for (int i = 0; i < m; i++){
int x, y;
scanf("%d%d", &x, &y);
toys[i] = point(x, y);
for (int j = 0; j <= n; j++){
double d1 = (lines[j].p2 - lines[j].p1) ^ (toys[i] - lines[j].p1);
double d2 = (lines[j + 1].p2 - lines[j + 1].p1) ^ (toys[i] - lines[j + 1].p1);
if (sgn(d1) != sgn(d2)){
ans[j]++;
break;
}
}
}
int avr = m/(n + 1);
BubbleSort<int>(ans, n + 1, cmpint);
for (int i = 0, cnt = 0, old = ans[0];
i <= n;
i++, cnt++, (ans[i] == old)?0:(old?printf("%d: %d\n", old, cnt):0, cnt = 0), old = ans[i]);
//puts("");
}
getchar();
return 0;
}

POJ 2398 - Toy Storage 点与直线位置关系的更多相关文章

  1. poj 2398 Toy Storage(计算几何)

    题目传送门:poj 2398 Toy Storage 题目大意:一个长方形的箱子,里面有一些隔板,每一个隔板都可以纵切这个箱子.隔板将这个箱子分成了一些隔间.向其中扔一些玩具,每个玩具有一个坐标,求有 ...

  2. POJ 2318 TOYS && POJ 2398 Toy Storage(几何)

    2318 TOYS 2398 Toy Storage 题意 : 给你n块板的坐标,m个玩具的具体坐标,2318中板是有序的,而2398无序需要自己排序,2318要求输出的是每个区间内的玩具数,而231 ...

  3. 简单几何(点与线段的位置) POJ 2318 TOYS && POJ 2398 Toy Storage

    题目传送门 题意:POJ 2318 有一个长方形,用线段划分若干区域,给若干个点,问每个区域点的分布情况 分析:点和线段的位置判断可以用叉积判断.给的线段是排好序的,但是点是无序的,所以可以用二分优化 ...

  4. poj 2398 Toy Storage(计算几何 点线关系)

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4588   Accepted: 2718 Descr ...

  5. POJ 2398 Toy Storage(计算几何,叉积判断点和线段的关系)

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3146   Accepted: 1798 Descr ...

  6. POJ 2398 Toy Storage (叉积判断点和线段的关系)

    题目链接 Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4104   Accepted: 2433 ...

  7. 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage

    POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...

  8. 2018.07.04 POJ 2398 Toy Storage(二分+简单计算几何)

    Toy Storage Time Limit: 1000MS Memory Limit: 65536K Description Mom and dad have a problem: their ch ...

  9. poj 2318 TOYS &amp; poj 2398 Toy Storage (叉积)

    链接:poj 2318 题意:有一个矩形盒子,盒子里有一些木块线段.而且这些线段坐标是依照顺序给出的. 有n条线段,把盒子分层了n+1个区域,然后有m个玩具.这m个玩具的坐标是已知的,问最后每一个区域 ...

随机推荐

  1. phpunit4.1的干净测试

    一般而言,写测试时需要加载一些文件来进行自动加载 但在phpunit4.1中只要其中一个测试文件加载了,其他测试文件就不需要再加载

  2. Ubuntu 系统密码相关问题

    第一个问题: Ubuntu 密码失效解决办法 拷贝:http://www.myexception.cn/operating-system/1707766.html ubuntu14.04突然不能登录, ...

  3. jquery中checkbox选中的问题之prop&attr惹的祸

    一个网上很多的例子如下: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http: ...

  4. Spring-MVC开发之全局异常捕获全面解读

    异常,异常 我们一定要捕获一切该死的异常,宁可错杀一千也不能放过一个! 产品上线后的异常更要命,一定要屏蔽错误内容,以免暴露敏感信息! 在用Spring MVC开发WEB应用时捕获全局异常的方法基本有 ...

  5. 全景视频外包团队:U3D全景漫游(二)

    单击Ambient Light,如下 调整为 即可设置完成 14.设置第一人称浏览 删除场景中Main Camera 将Project区域的Standard Assets下的Prefabs下的Firs ...

  6. smarty中如何统计数组的个数?

    在做web前端中,很多人会遇到在smarty中如何统计数组的个数,其实很简单 比如数组$array 你只需要用{$array|@count}就可以获取.

  7. JavaScript中 Promise的学习以及使用

    今天一个哥们发过来一段js代码,没看懂,就顺便学习了一下,代码如下  Promise.resolve('zhangkai').then(value => {console.log(value)} ...

  8. Handler基本概念

    Handler基本概念: Handler主要用于异步消息的处理:当发出一个消息之后,首先进入一个消息队列,发送消息的函数即刻返回,而另外一个部分逐个的在消息队列中将消息取出,然后对消息进行出来,就是发 ...

  9. gcc-常见命令和错误

      一:编译过程的4个阶段:预处理,编译,汇编,链接; 1:最常用的方式 gcc hello.c -o hello 2:预处理后停止编译 gcc -E hello.c -o hello.i(.i通常为 ...

  10. oracle的char和varchar类型

    源地址:https://zhidao.baidu.com/question/140310197.html varchar与char的区别就在于是否可变长度.char(5)就是定义一个5个字符长度的字符 ...