HBase filter shell操作
创建表
create 'test1', 'lf', 'sf'
lf: column family of LONG values (binary value)
-- sf: column family of STRING values
导入数据
put 'test1', 'user1|ts1', 'sf:c1', 'sku1'
put 'test1', 'user1|ts2', 'sf:c1', 'sku188'
put 'test1', 'user1|ts3', 'sf:s1', 'sku123'
put 'test1', 'user2|ts4', 'sf:c1', 'sku2'
put 'test1', 'user2|ts5', 'sf:c2', 'sku288'
put 'test1', 'user2|ts6', 'sf:s1', 'sku222'
一个用户(userX),在什么时间(tsX),作为rowkey
对什么产品(value:skuXXX),做了什么操作作为列名,比如,c1: click from homepage; c2: click from ad; s1: search from homepage; b1: buy
查询案例
谁的值=sku188
scan 'test1', FILTER=>"ValueFilter(=,'binary:sku188')"
ROW COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
谁的值包含88
scan 'test1', FILTER=>"ValueFilter(=,'substring:88')"
ROW COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user2|ts5 column=sf:c2, timestamp=1409122355030, value=sku288
通过广告点击进来的(column为c2)值包含88的用户
scan 'test1', FILTER=>"ColumnPrefixFilter('c2') AND ValueFilter(=,'substring:88')"
ROW COLUMN+CELL
user2|ts5 column=sf:c2, timestamp=1409122355030, value=sku288
通过搜索进来的(column为s)值包含123或者222的用户
scan 'test1', FILTER=>"ColumnPrefixFilter('s') AND ( ValueFilter(=,'substring:123') OR ValueFilter(=,'substring:222') )"
ROW COLUMN+CELL
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
user2|ts6 column=sf:s1, timestamp=1409122355970, value=sku222
rowkey为user1开头的
scan 'test1', FILTER => "PrefixFilter ('user1')"
ROW COLUMN+CELL
user1|ts1 column=sf:c1, timestamp=1409122354868, value=sku1
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
FirstKeyOnlyFilter: 一个rowkey可以有多个version,同一个rowkey的同一个column也会有多个的值, 只拿出key中的第一个column的第一个version
KeyOnlyFilter: 只要key,不要value
scan 'test1', FILTER=>"FirstKeyOnlyFilter() AND ValueFilter(=,'binary:sku188') AND KeyOnlyFilter()"
ROW COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=
从user1|ts2开始,找到所有的rowkey以user1开头的
scan 'test1', {STARTROW=>'user1|ts2', FILTER => "PrefixFilter ('user1')"}
ROW COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
从user1|ts2开始,找到所有的到rowkey以user2开头
scan 'test1', {STARTROW=>'user1|ts2', STOPROW=>'user2'}
ROW COLUMN+CELL
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
查询rowkey里面包含ts3的
import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
import org.apache.hadoop.hbase.filter.RowFilter
scan 'test1', {FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), SubstringComparator.new('ts3'))}
ROW COLUMN+CELL
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
查询rowkey里面包含ts的
import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
import org.apache.hadoop.hbase.filter.RowFilter
scan 'test1', {FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'), SubstringComparator.new('ts'))}
ROW COLUMN+CELL
user1|ts1 column=sf:c1, timestamp=1409122354868, value=sku1
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
user2|ts4 column=sf:c1, timestamp=1409122354998, value=sku2
user2|ts5 column=sf:c2, timestamp=1409122355030, value=sku288
user2|ts6 column=sf:s1, timestamp=1409122355970, value=sku222
加入一条测试数据
put 'test1', 'user2|err', 'sf:s1', 'sku999'
查询rowkey里面以user开头的,新加入的测试数据并不符合正则表达式的规则,故查询不出来
import org.apache.hadoop.hbase.filter.RegexStringComparator
import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
import org.apache.hadoop.hbase.filter.RowFilter
scan 'test1', {FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'),RegexStringComparator.new('^user\d+\|ts\d+$'))}
ROW COLUMN+CELL
user1|ts1 column=sf:c1, timestamp=1409122354868, value=sku1
user1|ts2 column=sf:c1, timestamp=1409122354918, value=sku188
user1|ts3 column=sf:s1, timestamp=1409122354954, value=sku123
user2|ts4 column=sf:c1, timestamp=1409122354998, value=sku2
user2|ts5 column=sf:c2, timestamp=1409122355030, value=sku288
user2|ts6 column=sf:s1, timestamp=1409122355970, value=sku222
加入测试数据
put 'test1', 'user1|ts9', 'sf:b1', 'sku1'
b1开头的列中并且值为sku1的
scan 'test1', FILTER=>"ColumnPrefixFilter('b1') AND ValueFilter(=,'binary:sku1')"
ROW COLUMN+CELL
user1|ts9 column=sf:b1, timestamp=1409124908668, value=sku1
SingleColumnValueFilter的使用,b1开头的列中并且值为sku1的
import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SingleColumnValueFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
scan 'test1', {COLUMNS => 'sf:b1', FILTER => SingleColumnValueFilter.new(Bytes.toBytes('sf'), Bytes.toBytes('b1'), CompareFilter::CompareOp.valueOf('EQUAL'), Bytes.toBytes('sku1'))}
ROW COLUMN+CELL
user1|ts9 column=sf:b1, timestamp=1409124908668, value=sku1
hbase zkcli 的使用
hbase zkcli
ls /
[hbase, zookeeper]
[zk: hadoop000:2181(CONNECTED) 1] ls /hbase
[meta-region-server, backup-masters, table, draining, region-in-transition, running, table-lock, master, namespace, hbaseid, online-snapshot, replication, splitWAL, recovering-regions, rs]
[zk: hadoop000:2181(CONNECTED) 2] ls /hbase/table
[member, test1, hbase:meta, hbase:namespace]
[zk: hadoop000:2181(CONNECTED) 3] ls /hbase/table/test1
[]
[zk: hadoop000:2181(CONNECTED) 4] get /hbase/table/test1
?master:60000}l$??lPBUF
cZxid = 0x107
ctime = Wed Aug 27 14:52:21 HKT 2014
mZxid = 0x10b
mtime = Wed Aug 27 14:52:22 HKT 2014
pZxid = 0x107
cversion = 0
dataVersion = 2
aclVersion = 0
ephemeralOwner = 0x0
dataLength = 31
numChildren = 0
HBase filter shell操作的更多相关文章
- HBase scan shell操作详解
创建表 create 'test1', 'lf', 'sf' lf: column family of LONG values (binary value) -- sf: column family ...
- HBASE与hive对比使用以及HBASE常用shell操作。与sqoop的集成
2.6.与 Hive 的集成2.6.1.HBase 与 Hive 的对比1) Hive(1) 数据仓库Hive 的本质其实就相当于将 HDFS 中已经存储的文件在 Mysql 中做了一个双射关系,以方 ...
- Hbase之shell操作
一. 介绍 HBase是一个分布式的.面向列的 开源数据库,源于google的一篇论文<bigtable:一个结构化数据的分布式存储系统>.HBase是Google Bigtable的开源 ...
- 【hbase】hbase的shell操作笔记
HBase Shell $ ./bin/hbase shell # 进入交互界面 DDL操作: create:创建表(默认命名空间为default) # create '表名','列族1','列族2' ...
- HBase常用shell操作
行(row),列(Column),列蔟(Column Family),列标识符(Column Qualifier)和单元格(Cell) 行:由一个个行键(rowkey)和一个多个列组成.其中rowke ...
- HBase的Shell操作
1.进入命令行 bin/hbase shell 2.输入help 查看各种命令组. 命令是分组的,可以执行help 'general'查看general组的命令. 3.常用命令 --显示有哪些表 li ...
- hbase的常用的shell命令&hbase的DDL操作&hbase的DML操作
前言 笔者在分类中的hbase栏目之前已经分享了hbase的安装以及一些常用的shell命令的使用,这里不仅仅重新复习一下shell命令,还会介绍hbase的DDL以及DML的相关操作. hbase的 ...
- HBase学习笔记——配置及Shell操作
1.HBase的配置 还是以前配置的集群,见:http://www.cnblogs.com/DarrenChan/p/6493373.html 我们约定:weekend03和weekend04放HMa ...
- Hbase_02、Hbase的常用的shell命令&Hbase的DDL操作&Hbase的DML操作(转)
阅读目录 前言 一.hbase的shell操作 1.1启动hbase shell 1.2执行hbase shell的帮助文档 1.3退出hbase shell 1.4使用status命令查看hbase ...
随机推荐
- 在eclipse中使用第三方库总结
一.建立user library 导入第三方jar文件,最简单的方式是:右键工程/属性/java build path/add external jars. 另一种方式是:window/prefren ...
- 在nginx中配置如何防止直接用ip访问服务器web server及server_name特性讲解
看了很多nginx的配置,好像都忽略了ip直接访问web的问题,不利于SEO优化,所以我们希望可以避免直接用IP访问网站,而是域名访问,具体怎么做呢,看下面. 官方文档中提供的方法: If you d ...
- MyBatis学习--mybatis开发dao的方法
简介 使用Mybatis开发Dao,通常有两个方法,即原始Dao开发方法和Mapper接口开发方法. 主要概念介绍: MyBatis中进行Dao开发时候有几个重要的类,它们是SqlSessionFac ...
- 【BZOJ 2820】YY的GCD
线性筛积性函数$g(x)$,具体看Yveh的题解: http://sr16.com:8081/%e3%80%90bzoj2820%e3%80%91yy%e7%9a%84gcd/ #include< ...
- 【BZOJ 2809】【APIO 2012】dispatching
昨天晚上zyf神犇问我的题,虽然我太弱参加不了APIO但也做一做吧. 用小数据拍了无数次总是查不出错来,交上去就WA,后来用国内数据测发现是主席树上区间相减的值没有用long long存,小数据真是没 ...
- 51nod 1007 正整数分组
将一堆正整数分为2组,要求2组的和相差最小. 例如:1 2 3 4 5,将1 2 4分为1组,3 5分为1组,两组和相差1,是所有方案中相差最少的. Input 第1行:一个数N,N为正整数的数量 ...
- BitmapFactory
1.以文件流的方式,假设在sdcard下有test.png图片FileInputStream fis = newFileInputStream("/sdcard/test.png" ...
- Mysql 中 iddata1的缩小步骤
原因就不多说了,,,, 直接上干货. 1. 备份数据库 mysqldump -q -uroot -ppassword --add-drop-table --all-databases >all1 ...
- codevs1183泥泞的道路
题意:给定一张有向稠密图和通过每条边的时间和路程,问从1到n的路程/时间 最大为多少 正解:SPFA+二分答案 开始做的时候,想直接跑图论,后来发现好像不对(不然数据范围怎么这么小) 但是显然要用到图 ...
- MATLAB for循环优化三例
最近一周,对MATLAB有进行了新一轮的学习,对其矩阵化编程的思维有了更深入的了解.确实精妙! 例1: 将矩阵A= [1 2 3; 2 4 3; 3 4 5]中所有的数字3替换为33. 如果还停留在C ...