“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第5章课程讲义下载(PDF)

Summary

  • Consistent and inconsistent system
    A system of equations $$[A][X]=[B]$$ where $[A]$ is called the coefficient matrix, $[B]$ is called the right hand side vector and $[X]$ is called the solution vector. This system is consistent if there is a solution, and it is inconsistent if there is no solution. However, a consistent system of equations does not mean a unique solution, that is, a consistent system of equations may have a unique solution or infinite solutions.
  • Rank
    • The rank of a matrix is defined as the order of the largest square sub-matrix whose determinant is not zero.
    • For example, the matrix $$[A] = \begin{bmatrix}3& 1& 2\\ 2& 0& 5\\ 5& 1& 7 \end{bmatrix}$$ we know that $$\det(A) = (-1)^{1+2} \times 1 \times \begin{vmatrix}2& 5\\ 5& 7\end{vmatrix} + (-1)^{2+3}\times1\times\begin{vmatrix}3& 2\\ 2& 5\end{vmatrix} = 11 - 11 =0$$ Thus its rank will be less than 3. On the other hand, the determinant of the sub-matrix $\begin{bmatrix}3& 1\\ 2& 0\end{bmatrix}$ is $0-2 = -2\neq0$. Hence the rank of matrix $A$ is 2.
    • A system of equations $$[A][X]=[B]$$ is consistent if the rank of $A$ is equal to the rank of the augmented matrix $[A|B]$.
    • A system of equations $$[A][X]=[B]$$ is inconsistent if the rank of $A$ is less than the rank of the augmented matrix $[A|B]$.
    • In practice, we can use elementary row operation to calculate the rank of a matrix. Or alternatively, directly find the result from the equivalent matrix of the augmented matrix of a system of equations.
    • The rank of the coefficient matrix $[A]$ is same as the number of unknowns, then the solution is unique; if the rank of the coefficient matrix $[A]$ is less than the number of unknowns, then infinite solutions exist.
    • A system of equations $$[A][X]=[B]$$
      • It has Unique solution if rank$(A) =$ rank$(A|B)=$ number of unknowns;
      • It has Infinite solutions if rank$(A)=$ rank$(A|B) < $ number of unknowns;
      • It has No solution (i.e. inconsistent) if rank$(A) < $ rank$(A|B)$
  • Inverse
    • The inverse of a square matrix $[A]$, if existing, is denoted by $[A]^{-1}$ such that $$[A][A]^{-1}=[I]=[A]^{-1}[A]$$ where $[I]$ is the identity matrix. $[A]$ is called to be invertible or nonsingular.
    • If $[A]$ and $[B]$ are two $n\times n$ matrices such that $[B][A] = [I]$, then these statements are also true:
      • $[B]$ is the inverse of $[A]$
      • $[A]$ is the inverse of $[B]$
      • $[A]$ and $[B]$ are both invertible
      • $[A][B]=[I]$
      • $[A]$ and $[B]$ are both nonsingular
      • all columns (rows) of $[A]$ and $[B]$ are linearly independent
    • Given $$[A][X]=[B]$$ then $[X]=[A]^{-1}[B]$.
    • The inverse of an invertible matrix can be found by $$[A]^{-1} = {1\over\det(A)}\text{adj}(A)$$ where $$\text{adj}(A) = \begin{bmatrix}C_{11}& C_{21}&\cdots& C_{n1} \\ \vdots & \vdots& &\vdots\\C_{1n}&C_{2n}&\cdots&C_{nn} \end{bmatrix}$$ where $C_{ij}$ are the cofactors of $a_{ij}$. This formula implies that $\det(A)\neq0$ if $[A]$ is invertible.
    • The inverse of a square matrix is unique, if it exists. Since $$\begin{cases}[B][A] = [I]\\ [C][A]=[I]\end{cases}\Rightarrow [B][A][C] = [I][C] = [C]$$ $$\Rightarrow [B][I] = [C]\Rightarrow [B]=[C]$$

Selected Problems

1. For a set of equations $[A][X]=[B]$, a unique solution exists if ( ).

Solution:

rank$(A) =$ rank$(A|B)$ and rank$(A)=$ number of unknowns.

2. What is the rank of matrix $$[A] = \begin{bmatrix}4& 4& 4& 4\\ 4& 4& 4& 4\\ 4& 4& 4& 4\\ 4& 4& 4& 4\end{bmatrix}$$

Solution:

$$[A] = \begin{bmatrix}4& 4& 4& 4\\ 4& 4& 4& 4\\ 4& 4& 4& 4\\ 4& 4& 4& 4\end{bmatrix}\Rightarrow\begin{cases}R_2-R_1\\ R_3-R_1\\ R_4-R_1\\ {1\over4}R_1\end{cases} \begin{bmatrix}1& 1& 1& 1\\ 0& 0& 0& 0\\ 0& 0& 0& 0\\ 0& 0& 0& 0\end{bmatrix}$$ Thus the rank of $[A]$ is 1.

3. A $3\times4$ matrix can have a rank of at most ( )?

Solution:

Since there are no square sub-matrices of order 4 as it is a $3\times4$ matrix, the rank of this matrix is at most 3.

4. If $[A][X]=[B]$ has a unique solution, where the order of $[A]$ is $3\times3$, $[X]$ is $3\times1$, then the rank of $[A]$ is ( ).

Solution:

Since it has a unique solution, that is, the rank of $[A]$ equals to both of the rank of augmented matrix and the number of unknowns, which is 3.

5. Show if the following system of equations is consistent or inconsistent. If they are consistent, determine if the solution would be unique or infinite ones exist. $$\begin{bmatrix}1& 2& 5\\ 7& 3& 9\\ 8& 5& 14\end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3\end{bmatrix} = \begin{bmatrix}8\\19\\27\end{bmatrix}$$

Solution:

The augmented matrix is $$\begin{bmatrix}1& 2& 5 & 8\\ 7& 3& 9 & 19\\ 8& 5& 14 &27\end{bmatrix}\Rightarrow R_3-R_1-R_2 \begin{bmatrix}1& 2& 5 & 8\\ 7& 3& 9 & 19\\ 0& 0& 0 &0\end{bmatrix}$$ $$\Rightarrow R_2-7R_1 \begin{bmatrix}1& 2& 5 & 8\\ 0& -11& -26 & -37\\ 0& 0& 0 &0\end{bmatrix}$$ $$\Rightarrow -{1\over11}R_2 \begin{bmatrix}1& 2& 5 & 8\\ 0& 1&{26\over11} & {37\over11}\\ 0& 0& 0 &0\end{bmatrix}\Rightarrow R_1-2R_2 \begin{bmatrix}1& 0& {3\over11} & {14\over11}\\ 0& 1&{26\over11} & {37\over11}\\ 0& 0& 0 &0\end{bmatrix}$$ Thus the rank of both coefficient matrix and augmented matrix is 2, which is less than the number of unknowns, that is, it is consistent system and has infinite solutions.

6. Show if the following system of equations is consistent or inconsistent. If they are consistent, determine if the solution would be unique or infinite ones exist. $$\begin{bmatrix}1& 2& 5\\ 7& 3& 9\\ 8& 5& 14\end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3\end{bmatrix} = \begin{bmatrix}8\\19\\28\end{bmatrix}$$

Solution: The augmented matrix is $$\begin{bmatrix}1& 2& 5 & 8\\ 7& 3& 9 & 19\\ 8& 5& 14 &28\end{bmatrix}\Rightarrow R_3-R_1-R_2 \begin{bmatrix}1& 2& 5 & 8\\ 7& 3& 9 & 19\\ 0& 0& 0 &1\end{bmatrix}$$ The last row of the above matrix shows that it is an inconsistent system.

7. Show if the following system of equations is consistent or inconsistent. If they are consistent, determine if the solution would be unique or infinite ones exist. $$\begin{bmatrix}1& 2& 5\\ 7& 3& 9\\ 8& 5& 13\end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3\end{bmatrix} = \begin{bmatrix}8\\19\\28\end{bmatrix}$$

Solution:

The augmented matrix is $$\begin{bmatrix}1& 2& 5 & 8\\ 7& 3& 9 & 19\\ 8& 5& 13 &28\end{bmatrix}\Rightarrow R_3-R_1-R_2 \begin{bmatrix}1& 2& 5 & 8\\ 7& 3& 9 & 19\\ 0& 0& -1 &1\end{bmatrix}$$ $$\Rightarrow R_2-7R_1\begin{bmatrix}1& 2& 5 & 8\\ 0& -11& -26 & -37\\ 0& 0& -1 &1\end{bmatrix}$$ $$\Rightarrow -{1\over11}R_2\begin{bmatrix}1& 2& 5 & 8\\ 0& 1& {26\over11}&{37\over11}\\ 0& 0& -1 &1\end{bmatrix}\Rightarrow \begin{cases}R_1-2R_2\\ R_2+{26\over11}R_3\end{cases} \begin{bmatrix}1& 0& {3\over11} & {14\over11}\\ 0& 1& 0 & {63\over11}\\ 0& 0& -1 &1\end{bmatrix}$$ $$\Rightarrow \begin{cases}R_1+{3\over11}R_3\\-R_3\end{cases} \begin{bmatrix}1& 0& 0 & {17\over11}\\ 0& 1& 0 & {63\over11}\\ 0& 0& 1 & -1\end{bmatrix}$$ That is, the system is consistent and it has unique solution.

8. For what value of $a$ will the following equation have $$\begin{cases}x_1+x_2+x_3=4\\ x_3=2\\ (a^2-4)x_1+x_3=a-2 \end{cases}$$ (A) Unique solution; (B) No solution; (C) Infinite solutions.

Solution:

The augmented matrix is $$\begin{bmatrix}1& 1& 1& 4\\ 0& 0& 1& 2\\ a^2-4& 0& 1& a-2\end{bmatrix}$$ If $a=2$, then $$\begin{bmatrix}1& 1& 1& 4\\ 0& 0& 1& 2\\ 0& 0& 1& 0\end{bmatrix}$$ The last row shows that it is inconsistent.\\ If $a=-2$, then $$\begin{bmatrix}1& 1& 1& 4\\ 0& 0& 1& 2\\ 0& 0& 1& -4\end{bmatrix}\Rightarrow R_3-R_2 \begin{bmatrix}1& 1& 1& 4\\ 0& 0& 1& 2\\ 0& 0& 0& -6\end{bmatrix}$$ The last row shows that it is inconsistent.\\ If $a\neq\pm2$, then $$\begin{bmatrix}1& 1& 1& 4\\ 0& 0& 1& 2\\ a^2-4& 0& 1& a-2\end{bmatrix} \Rightarrow {1\over a-2}R_3 \begin{bmatrix}1& 1& 1& 4\\ 0& 0& 1& 2\\ a+2 & 0& {1\over a-2}& 1\end{bmatrix}$$ From the second row we know that $x_2=2$, and deduce that other two unknowns are also unique, that is, it has unique solution. Thus, the system has unique solution if $a\neq\pm2$; the system has no solution if $a=\pm2$; and there is no possible to have infinite solutions.

9. Find the cofactor matrix and the adjoint matrix of $$[A]=\begin{bmatrix}3& 4& 1\\ 2& -7& -1\\ 8& 1& 5\end{bmatrix}$$

Solution:

Firstly, find the cofactors of each $a_{ij}$: $$\begin{cases} C_{11} = M_{11} = -35+1 =-34\\ C_{12}=-M_{12}=-(10+8)=-18\\ C_{13}=M_{13}=2+56 =58\\ C_{21}=-M_{21}=-(20-1)=-19\\ C_{22}=M_{22}=15-8=7\\ C_{23}=-M_{23}=-(3-32)=29 \\ C_{31}=M_{31} = -4+7=4\\ C_{32}= -M_{32} = -(-3-2)=5\\ C_{33}=M_{33}=-21-8=-29 \end{cases}$$ Thus the cofactor matrix is $$\begin{bmatrix}-34& -18 & 58\\ -19& 7& 29\\ 3& 5& -29\end{bmatrix}$$ and the adjoint matrix is the transpose of the cofactor matrix, that is $$\begin{bmatrix}-34& -19& 3\\ -18& 7& 5\\ 58& 29& -29\end{bmatrix}$$

10. Find $[A]^{-1}$ of the matrix $$[A]=\begin{bmatrix}3& 4& 1\\ 2& -7& -1\\ 8& 1& 5\end{bmatrix}$$

Solution:

From the result of Question 9 and $[A]^{-1}={1\over\det(A)}\text{adj} (A)$, we have $$[A]^{-1}=-{1\over116}\begin{bmatrix}-34& -19& 3\\ -18& 7& 5\\ 58& 29& -29\end{bmatrix} = \begin{bmatrix}{17\over58}& {19\over116}& -{3\over116}\\ {9\over58}& -{7\over116}& -{5\over116} \\ -{1\over2}& -{1\over4}& {1\over4}\end{bmatrix}$$

11. Prove that if $[A]$ and $[B]$ are both invertible and are square matrices of same order, then $$([A][B])^{-1} = [B]^{-1}[A]^{-1}$$

Solution:

$$[A][B][B]^{-1}[A]^{-1}=[A][I][A]^{-1}=[A][A]^{-1}=[I]$$ and $$[B]^{-1}[A]^{-1}[A][B]=[B]^{-1}[I][B]=[B]^{-1}[B]=[I]$$ $$\Rightarrow ([A][B])^{-1} = [B]^{-1}[A]^{-1}$$

12. What is the inverse of a square diagonal matrix? Does it always exist?

Solution:

Since $$\begin{bmatrix}a_{11}&0&\cdots&0\\ 0& a_{22}&\cdots&0\\ \vdots& \vdots&\cdots&\vdots\\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}\cdot \begin{bmatrix}b_{11}&0&\cdots&0\\ 0& b_{22}&\cdots&0\\ \vdots& \vdots&\cdots&\vdots\\ 0 & 0 & \cdots & b_{nn} \end{bmatrix}$$ $$= \begin{bmatrix} a_{11}b_{11} & 0 &\cdots &0\\ 0& a_{22}b_{22}&\cdots&0\\ \vdots& \vdots &\cdots &\vdots\\ 0 & 0 & \cdots & a_{nn}b_{nn} \end{bmatrix}$$ The inverse of a square matrix $$[A] = \begin{bmatrix}a_{11}&0&\cdots&0\\ 0& a_{22}&\cdots&0\\ \vdots& \vdots&\cdots&\vdots\\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$ is hence $$[A]^{-1} = \begin{bmatrix}{1\over a_{11}} & 0 &\cdots&0\\ 0& {1\over a_{22}}&\cdots&0\\ \vdots & \vdots & \cdots & \vdots\\ 0 & 0 & \cdots & {1\over a_{nn}}\end{bmatrix}$$

13. $[A]$ and $[B]$ are square matrices. If $[A][B]=[0]$ and $[A]$ is invertible, show $[B]=[0]$.

Solution:

$$[A][B]=[0]\Rightarrow [A]^{-1}[A][B]=[A]^{-1}[0]\Rightarrow [I][B]=[0]$$ $$\Rightarrow [B]=[0]$$

14. If $[A][B][C]=[I]$, where $[A]$, $[B]$, and $[C]$ are of the same size, show that $[B]$ is invertible.

Solution:

We will show that $\det(B)\neq0$, which is equivalent to $[B]$ is invertible. $$\det(A)\det(B)\det(C) = \det(ABC)= \det([I]) = 1$$ $$\Rightarrow\begin{cases}\det(A)\neq0\\ \det(B)\neq0\\ \det(C)\neq0\end{cases}$$

15. Prove if $[B]$ is invertible, $$[A][B]^{-1}=[B]^{-1}[A]$$ if and only if $$[A][B]=[B][A]$$

Solution:

$$AB=BA\Rightarrow ABB^{-1}=BAB^{-1}\Rightarrow A=BAB^{-1}$$ $$\Rightarrow B^{-1}A=B^{-1}BAB^{-1}=IAB^{-1}=AB^{-1}$$ On the other hand $$AB^{-1}=B^{-1}A\Rightarrow AB^{-1}B=B^{-1}AB\Rightarrow A=B^{-1}AB$$ $$\Rightarrow BA=BB^{-1}AB=IAB=AB$$

16. For what value if $a$ does the linear system have $$\begin{cases}x+y=2\\ 6x+6y=a\end{cases}$$ (A) infinite solutions; (B) unique solution.

Solution:

It has infinite solution when $a=12$; it is impossible to have unique solution.

17. What is the rank of $$\begin{bmatrix}1& 2& 3\\ 4& 6& 7\\ 6& 10& 13\end{bmatrix}$$

Solution:

$$\begin{bmatrix}1& 2& 3\\ 4& 6& 7\\ 6& 10& 13\end{bmatrix}\Rightarrow\begin{cases}R_2-4R_1\\ R_3-6R_1\end{cases} \begin{bmatrix}1& 2& 3\\ 0& -2& -5\\ 0& -2& -5\end{bmatrix}$$ $$\Rightarrow\begin{cases}R_3-R_2\\ -{1\over2}R_2\end{cases} \begin{bmatrix}1& 2& 3\\ 0& 1& {5\over2}\\ 0& 0& 0\end{bmatrix}\Rightarrow R_1-2R_2\begin{bmatrix}1& 0& -2\\ 0& 1& {5\over2}\\ 0& 0& 0\end{bmatrix}$$ Thus the rank of this matrix is 2.

18. What is the rank of $$\begin{bmatrix}1& 2& 3 & 6\\ 4& 6& 7 & 17\\ 6& 10& 13 & 29\end{bmatrix}$$

Solution:

$$\begin{bmatrix}1& 2& 3 & 6\\ 4& 6& 7 & 17\\ 6& 10& 13 & 29\end{bmatrix}\Rightarrow \begin{cases}R_2-4R_1\\ R_3-6R_1\end{cases}\begin{bmatrix}1& 2& 3 & 6\\ 0& -2& -5 & -7\\ 0& -2 & -5 & -7\end{bmatrix}$$ $$\Rightarrow R_3-R_2\begin{bmatrix}1& 2& 3 & 6\\ 0& -2 & -5 & -7\\ 0& 0& 0 & 0\end{bmatrix}$$ The rank of this matrix is 2.

19. What is the rank of $$\begin{bmatrix}1& 2& 3 & 6\\ 4& 6& 7 & 18\\ 6& 10& 13 & 30\end{bmatrix}$$

Solution:

$$\begin{bmatrix}1& 2& 3 & 6\\ 4& 6& 7 & 18\\ 6& 10& 13 & 30\end{bmatrix}\Rightarrow \begin{cases}R_2-4R_1\\ R_3-6R_1\end{cases}\begin{bmatrix}1& 2& 3 & 6\\ 0& -2& -5 & -6\\ 0& -2 & -5 & -6\end{bmatrix}$$ $$\Rightarrow R_3-R_2\begin{bmatrix}1& 2& 3 & 6\\ 0& -2 & -5 & -6\\ 0& 0& 0 & 0\end{bmatrix}$$ The rank of this matrix is 2.

20. How many solutions does the following system of equations have $$\begin{bmatrix}1& 2& 3\\ 4& 6& 7\\ 6& 10& 13\end{bmatrix}\begin{bmatrix}a\\ b\\ c\end{bmatrix} = \begin{bmatrix}6\\ 17\\ 29\end{bmatrix}$$

Solution:

From the previous questions 17, 18, we know that the rank of the coefficient matrix equals to the rank of the augmented matrix, which is 2. And it is less than the number of unknowns which is 3. Thus this system has infinite solutions.

21. How many solutions does the following system of equations have $$\begin{bmatrix}1& 2& 3\\ 4& 6& 7\\ 6& 10& 13\end{bmatrix}\begin{bmatrix}a\\ b\\ c\end{bmatrix} = \begin{bmatrix}6\\ 18\\ 30\end{bmatrix}$$

Solution:

From the previous questions 17, 19, we know that the rank of the coefficient matrix equals to the rank of the augmented matrix, which is 2. And it is less than the number of unknowns which is 3. Thus this system has infinite solutions.

22. Find the second column of the inverse of $$\begin{bmatrix}1& 2& 0\\ 4& 5& 0\\ 0& 0& 13\end{bmatrix}$$

Solution:

The second column of the product is $\begin{bmatrix}0 \\ 1 \\ 0 \end{bmatrix}$, which is the product of the given matrix and the second column of its inverse, say $\begin{bmatrix} x_1\\ x_2\\ x_3\end{bmatrix}$. Thus we have $$\begin{bmatrix}1& 2& 0\\ 4& 5& 0\\ 0& 0& 13\end{bmatrix}\begin{bmatrix} x_1\\ x_2\\ x_3\end{bmatrix} =\begin{bmatrix}0 \\ 1 \\ 0 \end{bmatrix}$$ $$\Rightarrow \begin{cases}x_1+2x_2=0\\ 4x_1+5x_2=1\\ 13x_3=0\end{cases}\Rightarrow \begin{cases}x_1={2\over3}\\ x_2=-{1\over3}\\ x_3=0\end{cases}\Rightarrow \begin{bmatrix}{2\over3}\\ -{1\over3}\\ 0\end{bmatrix}$$

23. Write out the inverse of $$\begin{bmatrix}1& 0& 0& 0\\ 0& 2& 0& 0\\ 0& 0& 4& 0\\ 0& 0& 0& 5\end{bmatrix}$$

Solution:

$$\begin{bmatrix}1& 0& 0& 0\\ 0& {1\over2}& 0& 0\\ 0& 0& {1\over4}& 0\\ 0& 0& 0& {1\over5}\end{bmatrix}$$

24. Solve $[A][X]=[B]$ for $[X]$ if $$[A]^{-1}=\begin{bmatrix}10& -7& 0\\ 2& 2& 5\\ 2& 0& 6\end{bmatrix}$$ and $$[B]=\begin{bmatrix}7 \\ 2.5\\ 6.012\end{bmatrix}$$

Solution:

$$[A][X]=[B]$$ $$\Rightarrow [X]=[A]^{-1}[B]= \begin{bmatrix}10& -7& 0\\ 2& 2& 5\\ 2& 0& 6\end{bmatrix}\cdot\begin{bmatrix}7 \\ 2.5\\ 6.012\end{bmatrix} = \begin{bmatrix}52.5 \\ 49.06\\ 50.072 \end{bmatrix}$$

25. Let $[A]$ be a $3\times3$ matrix. Suppose $$[X]=\begin{bmatrix}7\\2.5\\6.012\end{bmatrix}$$ is a solution to the homogeneous set of equations $[A][X]=[0]$. Does $[A]$ have an inverse?

Solution:

$$[A][X]=[0]\Rightarrow [X]=[A]^{-1}[0]=[0]$$ which contradicts to the value of $[X]$. Thus $[A]$ is not invertible.

26. Is the set of vectors $$\vec{A}=\begin{bmatrix}1\\ 1\\ 1\end{bmatrix},\ \vec{B}=\begin{bmatrix}1\\ 2\\ 5\end{bmatrix},\ \vec{C}=\begin{bmatrix}1\\ 4\\ 25\end{bmatrix}$$ linearly independent?

Solution:

If the rank of the vectors is 3, then it would be independent set of vectors. $$\begin{bmatrix}1& 1& 1\\ 1& 2& 4\\ 1& 5& 25\end{bmatrix} \Rightarrow \begin{bmatrix}1& 1& 1\\ 0& 1& 3\\ 0& 4& 24\end{bmatrix} \Rightarrow \begin{bmatrix}1& 0& -2\\ 0& 1& 3\\ 0& 0& 12\end{bmatrix} \Rightarrow \begin{bmatrix}1& 0& -2\\ 0& 1& 3\\ 0& 0& 1\end{bmatrix}$$ whose rank is 3. Thus they are independent vectors.

27. What is the rank of the set of vectors $$\vec{A}=\begin{bmatrix}1\\ 1\\ 1\end{bmatrix},\ \vec{B}=\begin{bmatrix}1\\ 2\\ 5\end{bmatrix},\ \vec{C}=\begin{bmatrix}1\\ 3\\ 6\end{bmatrix}$$

Solution:

$$\begin{bmatrix}1& 1& 1\\ 1& 2& 3\\ 1& 5& 6\end{bmatrix}\Rightarrow \begin{bmatrix}1& 1& 1\\ 0& 1& 2\\ 0& 4& 5\end{bmatrix} \Rightarrow \begin{bmatrix}1& 0& -1\\ 0& 1& 2\\ 0& 0& -3\end{bmatrix} \Rightarrow \begin{bmatrix}1& 0& -1\\ 0& 1& 2\\ 0& 0& 1\end{bmatrix}$$ Thus the rank of the vectors is 3.

28. What is the rank of $$\vec{A}=\begin{bmatrix}1\\ 1\\ 1\end{bmatrix},\ \vec{B}=\begin{bmatrix}2\\ 2\\ 4\end{bmatrix},\ \vec{C}=\begin{bmatrix}3\\ 3\\ 5\end{bmatrix}$$

Solution:

$$\begin{bmatrix}1& 2& 3\\ 1& 2& 3\\ 1& 4& 5\end{bmatrix}\Rightarrow \begin{bmatrix}1& 2& 3\\ 0& 0& 0\\ 0& 2& 2\end{bmatrix} \Rightarrow \begin{bmatrix}1& 0& 1\\ 0& 0& 0\\ 0& 1& 1\end{bmatrix} $$ Thus the rank of the vectors is 2.

29. The set of equations $$\begin{bmatrix}1& 2& 5\\ 2& 3& 7\\ 5& 8& 19\end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3\end{bmatrix}= \begin{bmatrix}18\\ 26\\ 70\end{bmatrix}$$ has ( ) solution(s).

Solution:

$$\begin{bmatrix}1& 2& 5 & 18\\ 2& 3& 7 & 26\\ 5& 8& 19 & 70\end{bmatrix} \Rightarrow \begin{bmatrix}1& 2& 5 & 18\\ 0& -1& -3 & -10\\ 0& -2& -6 & -20\end{bmatrix} \Rightarrow \begin{bmatrix}1& 2& 5 & 18\\ 0& -1& -3 & -10\\ 0& 0&0 & 0\end{bmatrix}$$ The rank of the coefficient matrix equals to the augmented matrix, which is 2. But it is less than the number of unknowns which is 3. Thus it has infinite solutions.

30. Does $\begin{bmatrix}6& 7\\ 12& 14\end{bmatrix}$ have an inverse?

Solution:

Since the determinant of this matrix is $6\times14-12\times7=0$, thus it does not have inverse.

A.Kaw矩阵代数初步学习笔记 5. System of Equations的更多相关文章

  1. A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  2. A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  4. A.Kaw矩阵代数初步学习笔记 1. Introduction

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  5. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  6. A.Kaw矩阵代数初步学习笔记 7. LU Decomposition

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  7. A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  8. A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. A.Kaw矩阵代数初步学习笔记 2. Vectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

随机推荐

  1. PHP 对于 MYSQL 基础操作

    基础 <?php // 不打印 notice info // error_reporting(0); // 连接 mysql $con = mysql_connect("localho ...

  2. 用canvas画“哆啦A梦”时钟

    前言:今天看完了Js书的canvas画布那张,好开心~又是心爱的canvas~欧耶~ 之前看到有人建议我画蓝胖子,对哦,我怎么把童年最喜欢的蓝胖子忘了,为了表达我对蓝胖子的歉意,所以今天画了会动的he ...

  3. HTTP 状态代码表示什么意思?

    HTTP 状态代码表示什么意思? 如果某项请求发送到您的服务器要求显示您网站上的某个网页,服务器将会返回 HTTP 状态码响应请求.此状态代码提供关于请求状态的信息,一些常见的状态代码为: 200 - ...

  4. des解密不完整,前面几位是乱码的解决办法

    在工作中遇到的Des解密问题,第三方发来的数据需要我们进行des解密,但是解密的结果前几位始终是乱码.废了半天劲,终于找到了问题所在. 下面先介绍一下des,了解des的同学可以直接看下面的解决办法. ...

  5. 正式版/免费版 Xamarin 体验与拥抱

    感谢MS, 感谢老纳.终于把 Xamarin 这个磨人的小妖精给收了,在也不用向大神要破解补丁了, 终于可以光明正大的使用了!! 跟据实践, 如果你们想体验一下 .NET 开发 IOS /Androi ...

  6. Java:反射

    初识Java反射机制: 从上面的描述可以看出Java的反射机制使得Java语言可以在运行时去认识在编译时并不了解的类/对象的信息,并且能够调用相应的方法或修改属性的值.Java反射机制的核心就是允许在 ...

  7. 用TypeScript开发Vue——如何通过vue实例化对象访问实际ViewModel对象

    用TypeScript开发Vue--如何通过vue实例化对象访问实际ViewModel对象 背景 我个人很喜欢TypeScript也很喜欢Vue,但在两者共同使用的时候遇到一个问题. Vue的实例化对 ...

  8. PagerAdapter 用法

    PagerAdapter简介 PagerAdapter是android.support.v4包中的类,它的子类有FragmentPagerAdapter, FragmentStatePagerAdap ...

  9. Tomcat遇到的问题

    1. java.lang.OutOfMemoryError: PermGen space 启动tomcat服务时,报这个错,查了下是,内存泄露 PermGen space的全称是Permanent G ...

  10. RabbitMQ 主题(Topic)

    我们进步改良了我们的日志系统.我们使用direct类型转发器,使得接收者有能力进行选择性的接收日志,,而非fanout那样,只能够无脑的转发. 虽然使用direct类型改良了我们的系统,但是仍然存在一 ...