A.Kaw矩阵代数初步学习笔记 5. System of Equations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第5章课程讲义下载(PDF)
Summary
- Consistent and inconsistent system
A system of equations $$[A][X]=[B]$$ where $[A]$ is called the coefficient matrix, $[B]$ is called the right hand side vector and $[X]$ is called the solution vector. This system is consistent if there is a solution, and it is inconsistent if there is no solution. However, a consistent system of equations does not mean a unique solution, that is, a consistent system of equations may have a unique solution or infinite solutions. - Rank
- The rank of a matrix is defined as the order of the largest square sub-matrix whose determinant is not zero.
- For example, the matrix $$[A] = \begin{bmatrix}3& 1& 2\\ 2& 0& 5\\ 5& 1& 7 \end{bmatrix}$$ we know that $$\det(A) = (-1)^{1+2} \times 1 \times \begin{vmatrix}2& 5\\ 5& 7\end{vmatrix} + (-1)^{2+3}\times1\times\begin{vmatrix}3& 2\\ 2& 5\end{vmatrix} = 11 - 11 =0$$ Thus its rank will be less than 3. On the other hand, the determinant of the sub-matrix $\begin{bmatrix}3& 1\\ 2& 0\end{bmatrix}$ is $0-2 = -2\neq0$. Hence the rank of matrix $A$ is 2.
- A system of equations $$[A][X]=[B]$$ is consistent if the rank of $A$ is equal to the rank of the augmented matrix $[A|B]$.
- A system of equations $$[A][X]=[B]$$ is inconsistent if the rank of $A$ is less than the rank of the augmented matrix $[A|B]$.
- In practice, we can use elementary row operation to calculate the rank of a matrix. Or alternatively, directly find the result from the equivalent matrix of the augmented matrix of a system of equations.
- The rank of the coefficient matrix $[A]$ is same as the number of unknowns, then the solution is unique; if the rank of the coefficient matrix $[A]$ is less than the number of unknowns, then infinite solutions exist.
- A system of equations $$[A][X]=[B]$$
- It has Unique solution if rank$(A) =$ rank$(A|B)=$ number of unknowns;
- It has Infinite solutions if rank$(A)=$ rank$(A|B) < $ number of unknowns;
- It has No solution (i.e. inconsistent) if rank$(A) < $ rank$(A|B)$
- Inverse
- The inverse of a square matrix $[A]$, if existing, is denoted by $[A]^{-1}$ such that $$[A][A]^{-1}=[I]=[A]^{-1}[A]$$ where $[I]$ is the identity matrix. $[A]$ is called to be invertible or nonsingular.
- If $[A]$ and $[B]$ are two $n\times n$ matrices such that $[B][A] = [I]$, then these statements are also true:
- $[B]$ is the inverse of $[A]$
- $[A]$ is the inverse of $[B]$
- $[A]$ and $[B]$ are both invertible
- $[A][B]=[I]$
- $[A]$ and $[B]$ are both nonsingular
- all columns (rows) of $[A]$ and $[B]$ are linearly independent
- Given $$[A][X]=[B]$$ then $[X]=[A]^{-1}[B]$.
- The inverse of an invertible matrix can be found by $$[A]^{-1} = {1\over\det(A)}\text{adj}(A)$$ where $$\text{adj}(A) = \begin{bmatrix}C_{11}& C_{21}&\cdots& C_{n1} \\ \vdots & \vdots& &\vdots\\C_{1n}&C_{2n}&\cdots&C_{nn} \end{bmatrix}$$ where $C_{ij}$ are the cofactors of $a_{ij}$. This formula implies that $\det(A)\neq0$ if $[A]$ is invertible.
- The inverse of a square matrix is unique, if it exists. Since $$\begin{cases}[B][A] = [I]\\ [C][A]=[I]\end{cases}\Rightarrow [B][A][C] = [I][C] = [C]$$ $$\Rightarrow [B][I] = [C]\Rightarrow [B]=[C]$$
Selected Problems
1. For a set of equations $[A][X]=[B]$, a unique solution exists if ( ).
Solution:
rank$(A) =$ rank$(A|B)$ and rank$(A)=$ number of unknowns.
2. What is the rank of matrix $$[A] = \begin{bmatrix}4& 4& 4& 4\\ 4& 4& 4& 4\\ 4& 4& 4& 4\\ 4& 4& 4& 4\end{bmatrix}$$
Solution:
$$[A] = \begin{bmatrix}4& 4& 4& 4\\ 4& 4& 4& 4\\ 4& 4& 4& 4\\ 4& 4& 4& 4\end{bmatrix}\Rightarrow\begin{cases}R_2-R_1\\ R_3-R_1\\ R_4-R_1\\ {1\over4}R_1\end{cases} \begin{bmatrix}1& 1& 1& 1\\ 0& 0& 0& 0\\ 0& 0& 0& 0\\ 0& 0& 0& 0\end{bmatrix}$$ Thus the rank of $[A]$ is 1.
3. A $3\times4$ matrix can have a rank of at most ( )?
Solution:
Since there are no square sub-matrices of order 4 as it is a $3\times4$ matrix, the rank of this matrix is at most 3.
4. If $[A][X]=[B]$ has a unique solution, where the order of $[A]$ is $3\times3$, $[X]$ is $3\times1$, then the rank of $[A]$ is ( ).
Solution:
Since it has a unique solution, that is, the rank of $[A]$ equals to both of the rank of augmented matrix and the number of unknowns, which is 3.
5. Show if the following system of equations is consistent or inconsistent. If they are consistent, determine if the solution would be unique or infinite ones exist. $$\begin{bmatrix}1& 2& 5\\ 7& 3& 9\\ 8& 5& 14\end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3\end{bmatrix} = \begin{bmatrix}8\\19\\27\end{bmatrix}$$
Solution:
The augmented matrix is $$\begin{bmatrix}1& 2& 5 & 8\\ 7& 3& 9 & 19\\ 8& 5& 14 &27\end{bmatrix}\Rightarrow R_3-R_1-R_2 \begin{bmatrix}1& 2& 5 & 8\\ 7& 3& 9 & 19\\ 0& 0& 0 &0\end{bmatrix}$$ $$\Rightarrow R_2-7R_1 \begin{bmatrix}1& 2& 5 & 8\\ 0& -11& -26 & -37\\ 0& 0& 0 &0\end{bmatrix}$$ $$\Rightarrow -{1\over11}R_2 \begin{bmatrix}1& 2& 5 & 8\\ 0& 1&{26\over11} & {37\over11}\\ 0& 0& 0 &0\end{bmatrix}\Rightarrow R_1-2R_2 \begin{bmatrix}1& 0& {3\over11} & {14\over11}\\ 0& 1&{26\over11} & {37\over11}\\ 0& 0& 0 &0\end{bmatrix}$$ Thus the rank of both coefficient matrix and augmented matrix is 2, which is less than the number of unknowns, that is, it is consistent system and has infinite solutions.
6. Show if the following system of equations is consistent or inconsistent. If they are consistent, determine if the solution would be unique or infinite ones exist. $$\begin{bmatrix}1& 2& 5\\ 7& 3& 9\\ 8& 5& 14\end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3\end{bmatrix} = \begin{bmatrix}8\\19\\28\end{bmatrix}$$
Solution: The augmented matrix is $$\begin{bmatrix}1& 2& 5 & 8\\ 7& 3& 9 & 19\\ 8& 5& 14 &28\end{bmatrix}\Rightarrow R_3-R_1-R_2 \begin{bmatrix}1& 2& 5 & 8\\ 7& 3& 9 & 19\\ 0& 0& 0 &1\end{bmatrix}$$ The last row of the above matrix shows that it is an inconsistent system.
7. Show if the following system of equations is consistent or inconsistent. If they are consistent, determine if the solution would be unique or infinite ones exist. $$\begin{bmatrix}1& 2& 5\\ 7& 3& 9\\ 8& 5& 13\end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3\end{bmatrix} = \begin{bmatrix}8\\19\\28\end{bmatrix}$$
Solution:
The augmented matrix is $$\begin{bmatrix}1& 2& 5 & 8\\ 7& 3& 9 & 19\\ 8& 5& 13 &28\end{bmatrix}\Rightarrow R_3-R_1-R_2 \begin{bmatrix}1& 2& 5 & 8\\ 7& 3& 9 & 19\\ 0& 0& -1 &1\end{bmatrix}$$ $$\Rightarrow R_2-7R_1\begin{bmatrix}1& 2& 5 & 8\\ 0& -11& -26 & -37\\ 0& 0& -1 &1\end{bmatrix}$$ $$\Rightarrow -{1\over11}R_2\begin{bmatrix}1& 2& 5 & 8\\ 0& 1& {26\over11}&{37\over11}\\ 0& 0& -1 &1\end{bmatrix}\Rightarrow \begin{cases}R_1-2R_2\\ R_2+{26\over11}R_3\end{cases} \begin{bmatrix}1& 0& {3\over11} & {14\over11}\\ 0& 1& 0 & {63\over11}\\ 0& 0& -1 &1\end{bmatrix}$$ $$\Rightarrow \begin{cases}R_1+{3\over11}R_3\\-R_3\end{cases} \begin{bmatrix}1& 0& 0 & {17\over11}\\ 0& 1& 0 & {63\over11}\\ 0& 0& 1 & -1\end{bmatrix}$$ That is, the system is consistent and it has unique solution.
8. For what value of $a$ will the following equation have $$\begin{cases}x_1+x_2+x_3=4\\ x_3=2\\ (a^2-4)x_1+x_3=a-2 \end{cases}$$ (A) Unique solution; (B) No solution; (C) Infinite solutions.
Solution:
The augmented matrix is $$\begin{bmatrix}1& 1& 1& 4\\ 0& 0& 1& 2\\ a^2-4& 0& 1& a-2\end{bmatrix}$$ If $a=2$, then $$\begin{bmatrix}1& 1& 1& 4\\ 0& 0& 1& 2\\ 0& 0& 1& 0\end{bmatrix}$$ The last row shows that it is inconsistent.\\ If $a=-2$, then $$\begin{bmatrix}1& 1& 1& 4\\ 0& 0& 1& 2\\ 0& 0& 1& -4\end{bmatrix}\Rightarrow R_3-R_2 \begin{bmatrix}1& 1& 1& 4\\ 0& 0& 1& 2\\ 0& 0& 0& -6\end{bmatrix}$$ The last row shows that it is inconsistent.\\ If $a\neq\pm2$, then $$\begin{bmatrix}1& 1& 1& 4\\ 0& 0& 1& 2\\ a^2-4& 0& 1& a-2\end{bmatrix} \Rightarrow {1\over a-2}R_3 \begin{bmatrix}1& 1& 1& 4\\ 0& 0& 1& 2\\ a+2 & 0& {1\over a-2}& 1\end{bmatrix}$$ From the second row we know that $x_2=2$, and deduce that other two unknowns are also unique, that is, it has unique solution. Thus, the system has unique solution if $a\neq\pm2$; the system has no solution if $a=\pm2$; and there is no possible to have infinite solutions.
9. Find the cofactor matrix and the adjoint matrix of $$[A]=\begin{bmatrix}3& 4& 1\\ 2& -7& -1\\ 8& 1& 5\end{bmatrix}$$
Solution:
Firstly, find the cofactors of each $a_{ij}$: $$\begin{cases} C_{11} = M_{11} = -35+1 =-34\\ C_{12}=-M_{12}=-(10+8)=-18\\ C_{13}=M_{13}=2+56 =58\\ C_{21}=-M_{21}=-(20-1)=-19\\ C_{22}=M_{22}=15-8=7\\ C_{23}=-M_{23}=-(3-32)=29 \\ C_{31}=M_{31} = -4+7=4\\ C_{32}= -M_{32} = -(-3-2)=5\\ C_{33}=M_{33}=-21-8=-29 \end{cases}$$ Thus the cofactor matrix is $$\begin{bmatrix}-34& -18 & 58\\ -19& 7& 29\\ 3& 5& -29\end{bmatrix}$$ and the adjoint matrix is the transpose of the cofactor matrix, that is $$\begin{bmatrix}-34& -19& 3\\ -18& 7& 5\\ 58& 29& -29\end{bmatrix}$$
10. Find $[A]^{-1}$ of the matrix $$[A]=\begin{bmatrix}3& 4& 1\\ 2& -7& -1\\ 8& 1& 5\end{bmatrix}$$
Solution:
From the result of Question 9 and $[A]^{-1}={1\over\det(A)}\text{adj} (A)$, we have $$[A]^{-1}=-{1\over116}\begin{bmatrix}-34& -19& 3\\ -18& 7& 5\\ 58& 29& -29\end{bmatrix} = \begin{bmatrix}{17\over58}& {19\over116}& -{3\over116}\\ {9\over58}& -{7\over116}& -{5\over116} \\ -{1\over2}& -{1\over4}& {1\over4}\end{bmatrix}$$
11. Prove that if $[A]$ and $[B]$ are both invertible and are square matrices of same order, then $$([A][B])^{-1} = [B]^{-1}[A]^{-1}$$
Solution:
$$[A][B][B]^{-1}[A]^{-1}=[A][I][A]^{-1}=[A][A]^{-1}=[I]$$ and $$[B]^{-1}[A]^{-1}[A][B]=[B]^{-1}[I][B]=[B]^{-1}[B]=[I]$$ $$\Rightarrow ([A][B])^{-1} = [B]^{-1}[A]^{-1}$$
12. What is the inverse of a square diagonal matrix? Does it always exist?
Solution:
Since $$\begin{bmatrix}a_{11}&0&\cdots&0\\ 0& a_{22}&\cdots&0\\ \vdots& \vdots&\cdots&\vdots\\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}\cdot \begin{bmatrix}b_{11}&0&\cdots&0\\ 0& b_{22}&\cdots&0\\ \vdots& \vdots&\cdots&\vdots\\ 0 & 0 & \cdots & b_{nn} \end{bmatrix}$$ $$= \begin{bmatrix} a_{11}b_{11} & 0 &\cdots &0\\ 0& a_{22}b_{22}&\cdots&0\\ \vdots& \vdots &\cdots &\vdots\\ 0 & 0 & \cdots & a_{nn}b_{nn} \end{bmatrix}$$ The inverse of a square matrix $$[A] = \begin{bmatrix}a_{11}&0&\cdots&0\\ 0& a_{22}&\cdots&0\\ \vdots& \vdots&\cdots&\vdots\\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$ is hence $$[A]^{-1} = \begin{bmatrix}{1\over a_{11}} & 0 &\cdots&0\\ 0& {1\over a_{22}}&\cdots&0\\ \vdots & \vdots & \cdots & \vdots\\ 0 & 0 & \cdots & {1\over a_{nn}}\end{bmatrix}$$
13. $[A]$ and $[B]$ are square matrices. If $[A][B]=[0]$ and $[A]$ is invertible, show $[B]=[0]$.
Solution:
$$[A][B]=[0]\Rightarrow [A]^{-1}[A][B]=[A]^{-1}[0]\Rightarrow [I][B]=[0]$$ $$\Rightarrow [B]=[0]$$
14. If $[A][B][C]=[I]$, where $[A]$, $[B]$, and $[C]$ are of the same size, show that $[B]$ is invertible.
Solution:
We will show that $\det(B)\neq0$, which is equivalent to $[B]$ is invertible. $$\det(A)\det(B)\det(C) = \det(ABC)= \det([I]) = 1$$ $$\Rightarrow\begin{cases}\det(A)\neq0\\ \det(B)\neq0\\ \det(C)\neq0\end{cases}$$
15. Prove if $[B]$ is invertible, $$[A][B]^{-1}=[B]^{-1}[A]$$ if and only if $$[A][B]=[B][A]$$
Solution:
$$AB=BA\Rightarrow ABB^{-1}=BAB^{-1}\Rightarrow A=BAB^{-1}$$ $$\Rightarrow B^{-1}A=B^{-1}BAB^{-1}=IAB^{-1}=AB^{-1}$$ On the other hand $$AB^{-1}=B^{-1}A\Rightarrow AB^{-1}B=B^{-1}AB\Rightarrow A=B^{-1}AB$$ $$\Rightarrow BA=BB^{-1}AB=IAB=AB$$
16. For what value if $a$ does the linear system have $$\begin{cases}x+y=2\\ 6x+6y=a\end{cases}$$ (A) infinite solutions; (B) unique solution.
Solution:
It has infinite solution when $a=12$; it is impossible to have unique solution.
17. What is the rank of $$\begin{bmatrix}1& 2& 3\\ 4& 6& 7\\ 6& 10& 13\end{bmatrix}$$
Solution:
$$\begin{bmatrix}1& 2& 3\\ 4& 6& 7\\ 6& 10& 13\end{bmatrix}\Rightarrow\begin{cases}R_2-4R_1\\ R_3-6R_1\end{cases} \begin{bmatrix}1& 2& 3\\ 0& -2& -5\\ 0& -2& -5\end{bmatrix}$$ $$\Rightarrow\begin{cases}R_3-R_2\\ -{1\over2}R_2\end{cases} \begin{bmatrix}1& 2& 3\\ 0& 1& {5\over2}\\ 0& 0& 0\end{bmatrix}\Rightarrow R_1-2R_2\begin{bmatrix}1& 0& -2\\ 0& 1& {5\over2}\\ 0& 0& 0\end{bmatrix}$$ Thus the rank of this matrix is 2.
18. What is the rank of $$\begin{bmatrix}1& 2& 3 & 6\\ 4& 6& 7 & 17\\ 6& 10& 13 & 29\end{bmatrix}$$
Solution:
$$\begin{bmatrix}1& 2& 3 & 6\\ 4& 6& 7 & 17\\ 6& 10& 13 & 29\end{bmatrix}\Rightarrow \begin{cases}R_2-4R_1\\ R_3-6R_1\end{cases}\begin{bmatrix}1& 2& 3 & 6\\ 0& -2& -5 & -7\\ 0& -2 & -5 & -7\end{bmatrix}$$ $$\Rightarrow R_3-R_2\begin{bmatrix}1& 2& 3 & 6\\ 0& -2 & -5 & -7\\ 0& 0& 0 & 0\end{bmatrix}$$ The rank of this matrix is 2.
19. What is the rank of $$\begin{bmatrix}1& 2& 3 & 6\\ 4& 6& 7 & 18\\ 6& 10& 13 & 30\end{bmatrix}$$
Solution:
$$\begin{bmatrix}1& 2& 3 & 6\\ 4& 6& 7 & 18\\ 6& 10& 13 & 30\end{bmatrix}\Rightarrow \begin{cases}R_2-4R_1\\ R_3-6R_1\end{cases}\begin{bmatrix}1& 2& 3 & 6\\ 0& -2& -5 & -6\\ 0& -2 & -5 & -6\end{bmatrix}$$ $$\Rightarrow R_3-R_2\begin{bmatrix}1& 2& 3 & 6\\ 0& -2 & -5 & -6\\ 0& 0& 0 & 0\end{bmatrix}$$ The rank of this matrix is 2.
20. How many solutions does the following system of equations have $$\begin{bmatrix}1& 2& 3\\ 4& 6& 7\\ 6& 10& 13\end{bmatrix}\begin{bmatrix}a\\ b\\ c\end{bmatrix} = \begin{bmatrix}6\\ 17\\ 29\end{bmatrix}$$
Solution:
From the previous questions 17, 18, we know that the rank of the coefficient matrix equals to the rank of the augmented matrix, which is 2. And it is less than the number of unknowns which is 3. Thus this system has infinite solutions.
21. How many solutions does the following system of equations have $$\begin{bmatrix}1& 2& 3\\ 4& 6& 7\\ 6& 10& 13\end{bmatrix}\begin{bmatrix}a\\ b\\ c\end{bmatrix} = \begin{bmatrix}6\\ 18\\ 30\end{bmatrix}$$
Solution:
From the previous questions 17, 19, we know that the rank of the coefficient matrix equals to the rank of the augmented matrix, which is 2. And it is less than the number of unknowns which is 3. Thus this system has infinite solutions.
22. Find the second column of the inverse of $$\begin{bmatrix}1& 2& 0\\ 4& 5& 0\\ 0& 0& 13\end{bmatrix}$$
Solution:
The second column of the product is $\begin{bmatrix}0 \\ 1 \\ 0 \end{bmatrix}$, which is the product of the given matrix and the second column of its inverse, say $\begin{bmatrix} x_1\\ x_2\\ x_3\end{bmatrix}$. Thus we have $$\begin{bmatrix}1& 2& 0\\ 4& 5& 0\\ 0& 0& 13\end{bmatrix}\begin{bmatrix} x_1\\ x_2\\ x_3\end{bmatrix} =\begin{bmatrix}0 \\ 1 \\ 0 \end{bmatrix}$$ $$\Rightarrow \begin{cases}x_1+2x_2=0\\ 4x_1+5x_2=1\\ 13x_3=0\end{cases}\Rightarrow \begin{cases}x_1={2\over3}\\ x_2=-{1\over3}\\ x_3=0\end{cases}\Rightarrow \begin{bmatrix}{2\over3}\\ -{1\over3}\\ 0\end{bmatrix}$$
23. Write out the inverse of $$\begin{bmatrix}1& 0& 0& 0\\ 0& 2& 0& 0\\ 0& 0& 4& 0\\ 0& 0& 0& 5\end{bmatrix}$$
Solution:
$$\begin{bmatrix}1& 0& 0& 0\\ 0& {1\over2}& 0& 0\\ 0& 0& {1\over4}& 0\\ 0& 0& 0& {1\over5}\end{bmatrix}$$
24. Solve $[A][X]=[B]$ for $[X]$ if $$[A]^{-1}=\begin{bmatrix}10& -7& 0\\ 2& 2& 5\\ 2& 0& 6\end{bmatrix}$$ and $$[B]=\begin{bmatrix}7 \\ 2.5\\ 6.012\end{bmatrix}$$
Solution:
$$[A][X]=[B]$$ $$\Rightarrow [X]=[A]^{-1}[B]= \begin{bmatrix}10& -7& 0\\ 2& 2& 5\\ 2& 0& 6\end{bmatrix}\cdot\begin{bmatrix}7 \\ 2.5\\ 6.012\end{bmatrix} = \begin{bmatrix}52.5 \\ 49.06\\ 50.072 \end{bmatrix}$$
25. Let $[A]$ be a $3\times3$ matrix. Suppose $$[X]=\begin{bmatrix}7\\2.5\\6.012\end{bmatrix}$$ is a solution to the homogeneous set of equations $[A][X]=[0]$. Does $[A]$ have an inverse?
Solution:
$$[A][X]=[0]\Rightarrow [X]=[A]^{-1}[0]=[0]$$ which contradicts to the value of $[X]$. Thus $[A]$ is not invertible.
26. Is the set of vectors $$\vec{A}=\begin{bmatrix}1\\ 1\\ 1\end{bmatrix},\ \vec{B}=\begin{bmatrix}1\\ 2\\ 5\end{bmatrix},\ \vec{C}=\begin{bmatrix}1\\ 4\\ 25\end{bmatrix}$$ linearly independent?
Solution:
If the rank of the vectors is 3, then it would be independent set of vectors. $$\begin{bmatrix}1& 1& 1\\ 1& 2& 4\\ 1& 5& 25\end{bmatrix} \Rightarrow \begin{bmatrix}1& 1& 1\\ 0& 1& 3\\ 0& 4& 24\end{bmatrix} \Rightarrow \begin{bmatrix}1& 0& -2\\ 0& 1& 3\\ 0& 0& 12\end{bmatrix} \Rightarrow \begin{bmatrix}1& 0& -2\\ 0& 1& 3\\ 0& 0& 1\end{bmatrix}$$ whose rank is 3. Thus they are independent vectors.
27. What is the rank of the set of vectors $$\vec{A}=\begin{bmatrix}1\\ 1\\ 1\end{bmatrix},\ \vec{B}=\begin{bmatrix}1\\ 2\\ 5\end{bmatrix},\ \vec{C}=\begin{bmatrix}1\\ 3\\ 6\end{bmatrix}$$
Solution:
$$\begin{bmatrix}1& 1& 1\\ 1& 2& 3\\ 1& 5& 6\end{bmatrix}\Rightarrow \begin{bmatrix}1& 1& 1\\ 0& 1& 2\\ 0& 4& 5\end{bmatrix} \Rightarrow \begin{bmatrix}1& 0& -1\\ 0& 1& 2\\ 0& 0& -3\end{bmatrix} \Rightarrow \begin{bmatrix}1& 0& -1\\ 0& 1& 2\\ 0& 0& 1\end{bmatrix}$$ Thus the rank of the vectors is 3.
28. What is the rank of $$\vec{A}=\begin{bmatrix}1\\ 1\\ 1\end{bmatrix},\ \vec{B}=\begin{bmatrix}2\\ 2\\ 4\end{bmatrix},\ \vec{C}=\begin{bmatrix}3\\ 3\\ 5\end{bmatrix}$$
Solution:
$$\begin{bmatrix}1& 2& 3\\ 1& 2& 3\\ 1& 4& 5\end{bmatrix}\Rightarrow \begin{bmatrix}1& 2& 3\\ 0& 0& 0\\ 0& 2& 2\end{bmatrix} \Rightarrow \begin{bmatrix}1& 0& 1\\ 0& 0& 0\\ 0& 1& 1\end{bmatrix} $$ Thus the rank of the vectors is 2.
29. The set of equations $$\begin{bmatrix}1& 2& 5\\ 2& 3& 7\\ 5& 8& 19\end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3\end{bmatrix}= \begin{bmatrix}18\\ 26\\ 70\end{bmatrix}$$ has ( ) solution(s).
Solution:
$$\begin{bmatrix}1& 2& 5 & 18\\ 2& 3& 7 & 26\\ 5& 8& 19 & 70\end{bmatrix} \Rightarrow \begin{bmatrix}1& 2& 5 & 18\\ 0& -1& -3 & -10\\ 0& -2& -6 & -20\end{bmatrix} \Rightarrow \begin{bmatrix}1& 2& 5 & 18\\ 0& -1& -3 & -10\\ 0& 0&0 & 0\end{bmatrix}$$ The rank of the coefficient matrix equals to the augmented matrix, which is 2. But it is less than the number of unknowns which is 3. Thus it has infinite solutions.
30. Does $\begin{bmatrix}6& 7\\ 12& 14\end{bmatrix}$ have an inverse?
Solution:
Since the determinant of this matrix is $6\times14-12\times7=0$, thus it does not have inverse.
A.Kaw矩阵代数初步学习笔记 5. System of Equations的更多相关文章
- A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 1. Introduction
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 7. LU Decomposition
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
- A.Kaw矩阵代数初步学习笔记 2. Vectors
“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...
随机推荐
- centos6-honeyd安装&配置
安装 需要装 libpcap libevent libdnet 等(!) 有些用的yum,有些下载的安装包手动安装 (wget tar configure make install 非常linux) ...
- Java面试知识点总结
本篇文章会对面试中常遇到的Java技术点进行全面深入的总结,帮助我们在面试中更加得心应手,不参加面试的同学也能够借此机会梳理一下自己的知识体系,进行查漏补缺(阅读本文需要有一定的Java基础:若您初涉 ...
- Codeforces Round #359(div 2)
A:= v = B:^ w ^ C:一天n个小时,一个小时m分(n,m十进制),一个手表有两部分,左边表示时,右边表示分,但都是7进制,而且手表上最多只能有7个数字且数字不能重复,现在要你算出能正确表 ...
- Ubuntu更改右键菜单
方法/步骤1.这是我们在桌面文件夹ubuntugege上打开的右键菜单,你说你在~/.gnome2/nautilus-scripts/添加的右键菜单项目但它就是没有显示呀,于是你觉得Ubuntu 12 ...
- 别名现象,java对象之间的相互赋值
请看一下代码 import java.util.*; class book{ static int c = null; } public static void main(String[] args ...
- UEFI与MBR区别
EFI与MBR启动的区别 大硬盘和WIN8系统,让我们从传统的BIOS+MBR模式升级到UEFI+GPT模式,现在购买的主流电脑,都是预装WIN8系统,为了更好的支持2TB硬盘 ,更快速的启动win ...
- SharePoint Web Part Error – The Specified Solution Was Not Found
If you develop, release and add a SharePoint 2010 sandboxed solution web part to a page, then change ...
- 屠龙之路_大杀技之倚天屠龙_TenthDay
惊天变! alhpa恶龙终于现身了!随之出现是屠龙天团的少年们多时不见的公主.alpha恶龙虽然元气大伤.意识不清,但是它庞大的身躯只要稍微动弹,足以重创在场的所有少年,以及现在还被恶龙牢牢囚在手心的 ...
- 让apache后端显示真实客户端IP
公司是nginx做代理,后端的web服务用的是apache,然后我现在要分析日志,但是,我的apache日志上显示的是代理服务器的ip地址,不是客户的真实IP 所以这里我需要修改一下,让apache的 ...
- elasticsearch与mongodb分布式集群环境下数据同步
1.ElasticSearch是什么 ElasticSearch 是一个基于Lucene构建的开源.分布式,RESTful搜索引擎.它的服务是为具有数据库和Web前端的应用程序提供附加的组件(即可搜索 ...