MATLAB 图像分类 Image Category Classification Using Bag of Features
使用MATLAB实现图像的识别,这是MATLAB官网上面的例子,学习一下。
http://cn.mathworks.com/help/vision/examples/image-category-classification-using-bag-of-features.html
这个算法叫做a bag of features approach for image category classification,用于识别小图片里面的是小狗、小猫、还是火车、船等。
首先要下载原材料,用于训练
% Location of the compressed data set
url = 'http://www.vision.caltech.edu/Image_Datasets/Caltech101/101_ObjectCategories.tar.gz';
% Store the output in a temporary folder
outputFolder = fullfile(tempdir, 'caltech101'); % define output folde
if ~exist(outputFolder, 'dir') % download only once
disp('Downloading 126MB Caltech101 data set...');
untar(url, outputFolder);
end
在这个例子中,对飞机、轮船、笔记本电脑三种事物的图片进行识别
rootFolder = fullfile(outputFolder, '101_ObjectCategories'); imgSets = [ imageSet(fullfile(rootFolder, 'airplanes')), ...
imageSet(fullfile(rootFolder, 'ferry')), ...
imageSet(fullfile(rootFolder, 'laptop')) ];
imageSet : Use imageSet
class to help you manage the data. Since imageSet
operates on image file locations, and therefore does not load all the images into memory, it is safe to use on large image collections.
在控制台用下面的代码查看imgSets的一些属性
{ imgSets.Description } % display all labels on one line
[imgSets.Count] % show the corresponding count of images
对图片集进行预处理
首先,每个集合的图片数量不一致
minSetCount = min([imgSets.Count]); % determine the smallest amount of images in a category % Use partition method to trim the set.
imgSets = partition(imgSets, minSetCount, 'randomize');
接下来,将这些图片分为用于训练的和用于检验的,分别是30%和70%
[trainingSets, validationSets] = partition(imgSets, 0.3, 'randomize');
创建一个训练的那个东东——Create a Visual Vocabulary and Train an Image Category Classifier
Bag of words is a technique adapted to computer vision from the world of natural language processing. Since images do not actually contain discrete words, we first construct a "vocabulary" of SURF features representative of each image category.
这个算法基于自然语言处理?什么鬼。。。 应该是和自然语言处理的结合。
分这么两步:
extracts SURF features from all images in all image categories
constructs the visual vocabulary by reducing the number of features through quantization of feature space using K-means clustering
bag = bagOfFeatures(trainingSets);
上面这句话提取图片中的特征,输出这些,每次训练会不一样
Creating Bag-Of-Features from 3 image sets.
--------------------------------------------
* Image set 1: airplanes.
* Image set 2: ferry.
* Image set 3: laptop. * Extracting SURF features using the Grid selection method.
** The GridStep is [8 8] and the BlockWidth is [32 64 96 128]. * Extracting features from 20 images in image set 1...done. Extracted 86144 features.
* Extracting features from 20 images in image set 2...done. Extracted 70072 features.
* Extracting features from 20 images in image set 3...done. Extracted 97888 features. * Keeping 80 percent of the strongest features from each image set. * Balancing the number of features across all image sets to improve clustering.
** Image set 2 has the least number of strongest features: 56058.
** Using the strongest 56058 features from each of the other image sets. * Using K-Means clustering to create a 500 word visual vocabulary.
* Number of features : 168174
* Number of clusters (K) : 500 * Clustering...done. * Finished creating Bag-Of-Features
可视化,有点搞不懂了。。。到底在做什么
貌似是提取了500个特征,取某一图片,看看这个图片多大程度上有这些特征。
先说结果:
下面是代码:
Additionally, the bagOfFeatures object provides an encode
method for counting the visual word occurrences in an image. It produced a histogram that becomes a new and reduced representation of an image.
This histogram forms a basis for training a classifier and for the actual image classification. In essence, it encodes an image into a feature vector.
img = read(imgSets(), );
featureVector = encode(bag, img); % Plot the histogram of visual word occurrences
figure
bar(featureVector)
title('Visual word occurrences')
xlabel('Visual word index')
ylabel('Frequency of occurrence')
然后创建图像的分类器
Encoded training images from each category are fed into a classifier training process invoked by the trainImageCategoryClassifier
function. Note that this function relies on the multiclass linear SVM classifier from the Statistics and Machine Learning Toolbox™.
categoryClassifier = trainImageCategoryClassifier(trainingSets, bag);
输出这个:
Training an image category classifier for categories.
--------------------------------------------------------
* Category : airplanes
* Category : ferry
* Category : laptop * Encoding features for category ...done.
* Encoding features for category ...done.
* Encoding features for category ...done. * Finished training the category classifier. Use evaluate to test the classifier on a test set.
评估这个分类器的效果
confMatrix = evaluate(categoryClassifier, trainingSets);
输出这个,效果貌似很不错
Evaluating image category classifier for categories.
------------------------------------------------------- * Category : airplanes
* Category : ferry
* Category : laptop * Evaluating images from category ...done.
* Evaluating images from category ...done.
* Evaluating images from category ...done. * Finished evaluating all the test sets. * The confusion matrix for this test set is: PREDICTED
KNOWN | airplanes ferry laptop
--------------------------------------------
airplanes | 0.95 0.05 0.00
ferry | 0.00 1.00 0.00
laptop | 0.00 0.00 1.00 * Average Accuracy is 0.98.
用训练的素材检验当然效果很好,下面用之前分好的检验素材进行检验,默认返回的是“混淆矩阵”,所以要计算平均的分类精度。
confMatrix = evaluate(categoryClassifier, validationSets); % Compute average accuracy
mean(diag(confMatrix));
输出这个,效果还是很不错!
Evaluating image category classifier for categories.
------------------------------------------------------- * Category : airplanes
* Category : ferry
* Category : laptop * Evaluating images from category ...done.
* Evaluating images from category ...done.
* Evaluating images from category ...done. * Finished evaluating all the test sets. * The confusion matrix for this test set is: PREDICTED
KNOWN | airplanes ferry laptop
--------------------------------------------
airplanes | 0.85 0.13 0.02
ferry | 0.02 0.94 0.04
laptop | 0.04 0.02 0.94 * Average Accuracy is 0.91.
训练了,检验了,该上战场了!——Try the Newly Trained Classifier on Test Images
img = imread(fullfile(rootFolder, 'airplanes', 'image_0690.jpg'));
[labelIdx, scores] = predict(categoryClassifier, img); % Display the string label
categoryClassifier.Labels(labelIdx)
——完——
由于不懂算法,所以很多地方看不懂,无法扩展使用这个例子。
扩展阅读:
MATLAB官方文档:bagOfFeatures class
MATLAB 图像分类 Image Category Classification Using Bag of Features的更多相关文章
- Bag of Words/Bag of Features的Matlab源码发布
2010年11月19日 ⁄ 技术, 科研 ⁄ 共 1296字 ⁄ 评论数 26 ⁄ 被围观 4,150 阅读+ 由于自己以前发过一篇文章讲bow特征的matlab代码的优化的<Bag-Of-Wo ...
- OpenCV探索之路(二十八):Bag of Features(BoF)图像分类实践
在深度学习在图像识别任务上大放异彩之前,词袋模型Bag of Features一直是各类比赛的首选方法.首先我们先来回顾一下PASCAL VOC竞赛历年来的最好成绩来介绍物体分类算法的发展. 从上表我 ...
- Bag of Features (BOF)图像检索算法
1.首先.我们用surf算法生成图像库中每幅图的特征点及描写叙述符. 2.再用k-means算法对图像库中的特征点进行训练,生成类心. 3.生成每幅图像的BOF.详细方法为:推断图像的每一个特征点与哪 ...
- 图像分类之特征学习ECCV-2010 Tutorial: Feature Learning for Image Classification
ECCV-2010 Tutorial: Feature Learning for Image Classification Organizers Kai Yu (NEC Laboratories Am ...
- 浅析 Bag of Feature
Bag of Feature 是一种图像特征提取方法,它借鉴了文本分类的思路(Bag of Words),从图像抽象出很多具有代表性的「关键词」,形成一个字典,再统计每张图片中出现的「关键词」数量,得 ...
- matlab 局部特征检测与提取(问题与特征)
物体识别:SIFT 特征: 人脸识别:LBP 特征: 行人检测:HOG 特征: 0. 常见手工设计的低级别特征 manually designed low-level features 语音:高斯混合 ...
- 基于Tensorflow + Opencv 实现CNN自定义图像分类
摘要:本篇文章主要通过Tensorflow+Opencv实现CNN自定义图像分类案例,它能解决我们现实论文或实践中的图像分类问题,并与机器学习的图像分类算法进行对比实验. 本文分享自华为云社区< ...
- Masked Label Prediction: Unified Message Passing Model for Semi-Supervised Classification
背景 消息传递模型(Message Passing Model)基于拉普拉斯平滑假设(领居是相似的),试图聚合图中的邻居的信息来获取足够的依据,以实现更鲁棒的半监督节点分类. 图神经网络(Graph ...
- Machine Learning – 第2周(Linear Regression with Multiple Variables、Octave/Matlab Tutorial)
Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) O ...
随机推荐
- 优化Myeclipse10 Building Workspace速度慢等问题
今天把ext3.0部署到web project很慢很慢,查了一下,这个当笔记.转自http://blog.163.com/jong_cai/blog/static/870280452013111781 ...
- datable-默认参数列表
1 options { 'paging': false, 'scrollY': true, 'scrollX': true, 'scrollCollapse': false, 'ordering': ...
- 自定义view
这两篇文章不可错过,是最靠谱的基础文献.总的来说,如果想完全定制,就继承与于View类:如果只是在原有控件基础上拓展,那就继承TextView.Button或者LinearLayout等.接下来,就以 ...
- calico docker 应用实例
在上一篇文章<quay.io/coreos/etcd 基于Docker镜像的集群搭建>中,介绍了ETCD集群的搭建.在此基础上,我们进一步实践calico docker的应用. PaaS ...
- 【Prince2科普】Prince2七大主题之概论
[Prince2科普]Prince2七大主题之概论 PRINCE2的七大主题,就是项目管理中持续关注的七个方面,分别是: 1.商业论证 2.组织 3.质量 4.计划 5.风险 6.变更 7.进展 ...
- LINK : fatal error LNK1104: 无法打开文件“LIBCD.lib”
出现这类问题一般是由于所运行的项目是VC6(或者vs2003)创建的,而后又用VS2005或者更高版本工具打开项目导致的,原因都是因为LIBCD.lib文件被更改了.要解决问题的话,只要在链接设置那里 ...
- print函数
python中print既可以写成print a,也可以写成print(a) >>> a=1 >>> print a 1 >>> print(a) ...
- MQ框架的比较
MQ框架的比较 MQ框架非常之多,比较流行的有RabbitMq.ActiveMq.ZeroMq.kafka.这几种MQ到底应该选择哪个?要根据自己项目的业务场景和需求.下面我列出这些MQ之间的对比数据 ...
- C# Global Application_Error不执行
今天在开发过程中遇到一个很奇特的问题,就是 Global 文件中的Application_Error 方法不执行的问题,很是苦恼,查了有关这方面的问题,感觉网友们回答的都有点乱,有些人说 在编译时不需 ...
- python time模块
time模块 (有效时间1970-2038) (1)本地时间 (2)时间戳 (3)延时 time.localtime([secs]) #struct_time time.time() #timesta ...