bzoj2819 Nim
题意:给定一棵带点权的树,每次询问用一条路径上的点玩Nim游戏先手是否必胜,支持单点修改。
Nim游戏:所有堆的数目异或起来不为0时先手必胜,否则必败.
所以就是单点修改+路径异或和查询. 树剖一发,因为异或满足区间减法所以可以树剖套树状数组。(还有人说可以套zkw线段树?)
Dzy大爷说了一种dfs序+树状数组的方法:
http://dzy493941464.is-programmer.com/posts/40428.html
既然它只修改点的话,影响到的只是它这棵子树。那么很容易就想到了dfs序。这个子树就是连续一段。
先维护每个点dfs开始时和结束时的时间戳。修改的时候先在它自己的开始、结束位置上xor它自己变成零,然后再修改。
(x,y)路径上的xor值=query(x的开始) xor query(y的开始) xor lca(x,y)的点权。很好想通。LCA就倍增算一下好了。
没了。
“很好想通”,表示蒟蒻脑子有坑想了好久才明白QAQ。
首先,在求树上点对距离的时候我们是用节点到根的距离减去lca到根的距离,比如u到v的距离等于dis[u]+dis[v]-2*dis[lca(u,v)]
这里把点i到根节点路径上点的异或和记作sum[i],i的点权记作w[i],那么u,v路径上的异或和就是sum[u]^sum[v]^w[lca(u,v)]
这么做的原因在于lca(u,v)到根节点路径上的点权值在sum[u]和sum[v]中都出现,异或一下就没了.但是lca(u,v)的点权应当在答案中出现,却也被消掉了,所以还要单独异或上。
Lca可以倍增一发,那么问题还剩下动态维护每个点到根节点路径上的异或和.转换思路,分别考虑每个点能够影响其他哪些点的sum值,对于每个点i将它能影响的所有点的sum值进异或上w[i]。这个操作可以高效地完成,因为每个点只会影响它所在子树内的点的sum值。而一棵子树内的点在dfs序中是连续的一段,所以我们只需要一个数据结构支持区间修改单点查询,那么就可以树状数组了。查询sum[u]的时候直接查询u的DFS序在树状数组中对应的位置即可。
注意会卡爆栈,所以需要用BFS求DFS序。
#include<cstdio>
const int maxn=;
struct edge{
int to,next;
}lst[maxn<<];int len=;
int first[maxn];
void addedge(int a,int b){
lst[len].to=b;
lst[len].next=first[a];
first[a]=len++;
}
int w[maxn],pos[maxn],prt[maxn],depth[maxn],hvy[maxn],top[maxn],sz[maxn];
int q[maxn],head,tail;
int c[maxn];
inline int lowbit(int x){
return x&(-x);
}
void add(int x,int w){
for(;x<maxn;x+=lowbit(x)){
c[x]^=w;
}
}
int sum(int x){
int ans=;
for(;x;x-=lowbit(x))ans^=c[x];
return ans;
}
void bfs1(){
head=tail=;
q[tail++]=;depth[]=;
while(head!=tail){
int x=q[head++];
sz[x]=;
for(int pt=first[x];pt;pt=lst[pt].next){
if(lst[pt].to==prt[x])continue;
prt[lst[pt].to]=x;
depth[lst[pt].to]=depth[x]+;
q[tail++]=lst[pt].to;
}
}
for(int i=tail-;i>=;--i){
int x=q[i];
sz[prt[x]]+=sz[x];
if(sz[x]>sz[hvy[prt[x]]])hvy[prt[x]]=x;
}
}
void bfs2(){
top[]=;pos[]=;
for(int i=;i<tail;++i){
int x=q[i];
add(pos[x],w[x]);
if(hvy[x]){
top[hvy[x]]=top[x];
pos[hvy[x]]=pos[x]+;
int cntsz=sz[hvy[x]];
for(int pt=first[x];pt;pt=lst[pt].next){
if(lst[pt].to==prt[x]||lst[pt].to==hvy[x])continue;
top[lst[pt].to]=lst[pt].to;
pos[lst[pt].to]=pos[x]+cntsz+;
cntsz+=sz[lst[pt].to];
}
}
}
}
inline void swap(int &a,int &b){
int tmp=a;a=b;b=tmp;
}
int query(int u,int v){
int ans=;
int t1=top[u],t2=top[v];
while(t1!=t2){
if(depth[t1]<depth[t2])swap(t1,t2),swap(u,v);
ans^=sum(pos[t1]-);
ans^=sum(pos[u]);
u=prt[t1];t1=top[u];
}
if(depth[u]>depth[v])swap(u,v);
ans^=sum(pos[u]-);ans^=sum(pos[v]);
return ans;
}
int main(){
int n;scanf("%d",&n);
for(int i=;i<=n;++i)scanf("%d",w+i);
int a,b;
for(int i=;i<n;++i){
scanf("%d%d",&a,&b);
addedge(a,b);addedge(b,a);
}
bfs1();
bfs2();
int m;scanf("%d",&m);
char buf[];
while(m--){
scanf("%s%d%d",buf,&a,&b);
if(buf[]=='Q'){
if(query(a,b)==)printf("No\n");
else printf("Yes\n");
}else{
add(pos[a],w[a]);
w[a]=b;
add(pos[a],w[a]);
}
}
return ;
}
#include<cstdio>
const int maxn=;
struct edge{
int to,next;
}lst[maxn<<];int len=;
int first[maxn];
void addedge(int a,int b){
lst[len].to=b;
lst[len].next=first[a];
first[a]=len++;
}
int w[maxn];
int c[maxn];
inline int lowbit(int x){
return x&(-x);
}
void add(int x,int w){
for(;x<maxn;x+=lowbit(x))c[x]^=w;
}
int query(int x){
int ans=;
for(;x;x-=lowbit(x))ans^=c[x];
return ans;
}
int q[maxn];
int dfn[maxn],sz[maxn],depth[maxn];
int p[maxn][];
void bfs(){//求dfs序和倍增的预处理都在这里了
int head=,tail=,x,cntsz;
q[tail++]=;depth[]=;
while(head!=tail){
x=q[head++];
for(int pt=first[x];pt;pt=lst[pt].next){
if(lst[pt].to==p[x][])continue;
p[lst[pt].to][]=x;
depth[lst[pt].to]=depth[x]+;
q[tail++]=lst[pt].to;
}
for(int j=;p[x][j];++j)p[x][j+]=p[p[x][j]][j];
}
for(int i=tail-;i>=;--i){
x=q[i];
sz[x]++;
sz[p[x][]]+=sz[x];
}
dfn[]=;
for(int i=;i<tail;++i){
x=q[i];cntsz=;
for(int pt=first[x];pt;pt=lst[pt].next){
if(lst[pt].to==p[x][])continue;
dfn[lst[pt].to]=dfn[x]+cntsz+;
cntsz+=sz[lst[pt].to];
}
}
}
inline void swap(int &a,int &b){
int tmp=a;a=b;b=tmp;
}
int lca(int u,int v){
if(depth[u]<depth[v]){
swap(u,v);
}
for(int j=;j>=;--j){
if(depth[p[u][j]]>=depth[v])u=p[u][j];
}
if(u==v)return u;
for(int j=;j>=;--j){
if(p[u][j]!=p[v][j]){
u=p[u][j];v=p[v][j];
}
}
return p[u][];
} int main(){
int n;scanf("%d",&n);
for(int i=;i<=n;++i)scanf("%d",w+i);
int a,b;
for(int i=;i<n;++i){
scanf("%d%d",&a,&b);
addedge(a,b);addedge(b,a);
}
bfs();
for(int i=;i<=n;++i){
add(dfn[i],w[i]);add(dfn[i]+sz[i],w[i]);
}
int q;scanf("%d",&q);
char buf[];
int tmp;
while(q--){
scanf("%s%d%d",buf,&a,&b);
if(buf[]=='Q'){
tmp=query(dfn[a])^query(dfn[b])^w[lca(a,b)];
if(tmp){
printf("Yes\n");
}else{
printf("No\n");
}
}else{
add(dfn[a],w[a]);add(dfn[a]+sz[a],w[a]);
w[a]=b;
add(dfn[a],w[a]);add(dfn[a]+sz[a],w[a]);
}
}
return ;
}
bzoj2819 Nim的更多相关文章
- BZOJ2819: Nim 树链剖分
Description 著名游戏设计师vfleaking,最近迷上了Nim.普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可以不取.谁不能取谁输.这个游 ...
- BZOJ2819 Nim 【dfn序 + lca + 博弈论】
题目 著名游戏设计师vfleaking,最近迷上了Nim.普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可以不取.谁不能取谁输.这个游戏是有必胜策略的. ...
- bzoj2819: Nim(博弈+树剖)
2819: Nim 题目:传送门 题解: 很久之前学博弈的时候看过的一道水题,其实算不上博弈吧... 直接套上一个裸的树剖啊,把路径上的点值全都xor(xor满足结合率所以就不管那么多随便搞啦) do ...
- BZOJ2819 Nim(DFS序)
题目:单点修改.树链查询. 可以直接用树链剖分做.. 修改是O(QlogN),查询是O(QlogNlogN),Q=N=500000: 听说会超时.. 这题也可以用DFS序来做. 先不看修改,单单查询: ...
- 【手动开栈】【dfs序】【树状数组】【Tarjan】bzoj2819 Nim
考虑树状数组区间修改(只对其子树的答案有影响)点查询,每个点记录的是它到根路径上的权值异或和. 答案时query(L)^query(R)^a[lca]. 这种方法在支持区间加法.减法的树上询问的时候可 ...
- 【bzoj2819】 Nim
www.lydsy.com/JudgeOnline/problem.php?id=2819 (题目链接) 题意 动态树上路径异或和. Solution Nim取石子游戏的sg值就是每堆石子的异或和,所 ...
- 【BZOJ2819】Nim 树状数组+LCA
[BZOJ2819]Nim Description 著名游戏设计师vfleaking,最近迷上了Nim.普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可 ...
- 【bzoj2819】Nim
Description 著名游戏设计师vfleaking,最近迷上了Nim.普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可以不取.谁不能取谁输.这个游 ...
- 【bzoj2819】Nim(dfs序+树状数组/线段树)
题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2819 首先根据SG定理,可得若每堆石子数量的异或值为0,则后手必胜,反之先手必胜.于是 ...
随机推荐
- android中Camera setDisplayOrientation使用
在写相机相关应用的时候遇到捕获的画面方向和手机的方向不一致的问题,比如手机是竖着拿的,但是画面是横的,这是由于摄像头默认捕获的画面byte[]是根据横向来的,而你的应用是竖向的,解决办法是调用setD ...
- QT QToolBox类
QToolBox类的创建 //drawer.h #ifndef DRAWER_H #define DRAWER_H #include <QToolBox> #include <QTo ...
- Utrack声卡和机架包的调试
视频链接http://www.tudou.com/programs/view/giZZ7b2dhn4/ 关于怎么调试这个问题困扰了我几个月之久,也没人教我,我也不知道问谁,搜又搜不到,所幸现在解决了问 ...
- cookie记住密码功能
很多门户网站都提供了记住密码功能,虽然现在的浏览器都已经提供了相应的记住密码功能 效果就是你每次进入登录页面后就不需要再进行用户名和密码的输入: 记住密码功能基本都是使用cookie来进行实现的,因此 ...
- 记 FineUI 官方论坛所遭受的一次真实网络攻击!做一个像 ice 有道德的黑客!
在开始正文之前,请帮忙为当前 排名前 10 唯一的 .Net 开源软件 FineUI 投一票: 投票地址: https://code.csdn.net/2013OSSurvey/gitop/code ...
- Apache POI 实现对 Excel 文件读写
1. Apache POI 简介 Apache POI是Apache软件基金会的开放源码函式库. 提供API给Java应用程序对Microsoft Office格式档案读和写的功能. 老外起名字总是很 ...
- Nodejs进阶:基于express+multer的文件上传
关于作者 程序猿小卡,前腾讯IMWEB团队成员,阿里云栖社区专家博主.欢迎加入 Express前端交流群(197339705). 正在填坑:<Nodejs学习笔记> / <Expre ...
- 【NDK开发】android-ndk r10环境搭建
1)打开Android开发者的官网http://developer.android.com/找到Develop点击.如果页面打不开,通过代理来访问. 2)进入后再点击Tools 3)进入后在左侧找到N ...
- android服务之启动方式
服务有两种启动方式 通过startService方法来启动 通过bindService来开启服务 布局文件 在布局文件中我们定义了四个按键来测试这两种方式来开启服务的不同 <?xml versi ...
- 东大OJ 2SAT 异或
看了十年才懂懂了十年才会会了十年才会写写了十年才写完写完了十年才能改对 #include<stdio.h> #include<string.h> struct res{ int ...