UOJ265 【NOIP2016】愤怒的小鸟
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。
本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!
题目描述
Kiana 最近沉迷于一款神奇的游戏无法自拔。
简单来说,这款游戏是在一个平面上进行的。
有一架弹弓位于 (0,0)(0,0) 处,每次 Kiana 可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形如 y=ax2+bxy=ax2+bx 的曲线,其中 a,ba,b 是 Kiana 指定的参数,且必须满足 a<0a<0,a,ba,b 都是实数。
当小鸟落回地面(即 xx 轴)时,它就会瞬间消失。
在游戏的某个关卡里,平面的第一象限中有 nn 只绿色的小猪,其中第 ii 只小猪所在的坐标为 (xi,yi)(xi,yi)。
如果某只小鸟的飞行轨迹经过了 (xi,yi)(xi,yi),那么第 ii 只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行;
如果一只小鸟的飞行轨迹没有经过 (xi,yi)(xi,yi),那么这只小鸟飞行的全过程就不会对第 ii 只小猪产生任何影响。
例如,若两只小猪分别位于 (1,3)(1,3) 和 (3,3)(3,3),Kiana 可以选择发射一只飞行轨迹为 y=−x2+4xy=−x2+4x 的小鸟,这样两只小猪就会被这只小鸟一起消灭。
而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。
这款神奇游戏的每个关卡对 Kiana 来说都很难,所以 Kiana 还输入了一些神秘的指令,使得自己能更轻松地完成这个游戏。这些指令将在【输入格式】中详述。
假设这款游戏一共有 TT 个关卡,现在 Kiana 想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。由于她不会算,所以希望由你告诉她。
输入
从标准输入读入数据。
第一行包含一个正整数 TT,表示游戏的关卡总数。
下面依次输入这 TT 个关卡的信息。每个关卡第一行包含两个非负整数 n,mn,m,分别表示该关卡中的小猪数量和 Kiana 输入的神秘指令类型。接下来的 nn 行中,第 ii 行包含两个正实数 xi,yixi,yi,表示第 ii 只小猪坐标为 (xi,yi)(xi,yi)。数据保证同一个关卡中不存在两只坐标完全相同的小猪。
如果 m=0m=0,表示 Kiana 输入了一个没有任何作用的指令。
如果 m=1m=1,则这个关卡将会满足:至多用 ⌈n/3+1⌉⌈n/3+1⌉ 只小鸟即可消灭所有小猪。
如果 m=2m=2,则这个关卡将会满足:一定存在一种最优解,其中有一只小鸟消灭了至少 ⌊n/3⌋⌊n/3⌋ 只小猪。
保证 1≤n≤181≤n≤18,0≤m≤20≤m≤2,0<xi,yi<100<xi,yi<10,输入中的实数均保留到小数点后两位。
上文中,符号 ⌈c⌉⌈c⌉ 和 ⌊c⌋⌊c⌋ 分别表示对 cc 向上取整和向下取整,例如:⌈2.1⌉=⌈2.9⌉=⌈3.0⌉=⌊3.0⌋=⌊3.1⌋=⌊3.9⌋=3⌈2.1⌉=⌈2.9⌉=⌈3.0⌉=⌊3.0⌋=⌊3.1⌋=⌊3.9⌋=3。
输出
输出到标准输出。
对每个关卡依次输出一行答案。
输出的每一行包含一个正整数,表示相应的关卡中,消灭所有小猪最少需要的小鸟数量。
样例一
input
2
2 0
1.00 3.00
3.00 3.00
5 2
1.00 5.00
2.00 8.00
3.00 9.00
4.00 8.00
5.00 5.00
output
1
1
explanation
这组数据中一共有两个关卡。
第一个关卡与问题描述中的情形相同,22 只小猪分别位于 (1.00,3.00)(1.00,3.00) 和 (3.00,3.00)(3.00,3.00),只需发射一只飞行轨迹为 y=−x2+4xy=−x2+4x 的小鸟即可消灭它们。
第二个关卡中有 55 只小猪,但经过观察我们可以发现它们的坐标都在抛物线 y=−x2+6xy=−x2+6x 上,故 Kiana 只需要发射一只小鸟即可消灭所有小猪。
样例二
input
3
2 0
1.41 2.00
1.73 3.00
3 0
1.11 1.41
2.34 1.79
2.98 1.49
5 0
2.72 2.72
2.72 3.14
3.14 2.72
3.14 3.14
5.00 5.00
output
2
2
3
样例三
input
1
10 0
7.16 6.28
2.02 0.38
8.33 7.78
7.68 2.09
7.46 7.86
5.77 7.44
8.24 6.72
4.42 5.11
5.42 7.79
8.15 4.99
output
6 正解:搜索 or 状压DP or 记忆化搜索
解题报告: 算法一
我在考场上看到数据范围之后,就明显看出这是一道搜索题。而且n<=18,应该搜索+强力剪枝可以过。于是我就打了个爆搜。
具体实现就是:对于每个点,我分类讨论两种情况:自己新建一条抛物线,或者和之前的某一个点组合形成一条完整的抛物线。因为抛物线的式子只有2个变量,所以我们只需要2个点就可以确定这一条抛物线。搜索的时候,保存之前的每个点的状态,一个是已经由2个或以上的点形成的抛物线的a、b值,这样可以一开始就计算是不是已经被之前形成的抛物线经过了,如果经过了则可以直接搜下一个点。另外,还需要保存之前有哪些点尚未完成“配对”,即之前确定为是新建了一条抛物线之后,因为只有一个点不能确定抛物线的解析式,所以尚未完成“配对”。我们考虑当前点和之前没有“配对”的点一一组合形成新的抛物线,再往下搜索。值得注意的是,根据题意抛物线的解析式中的a一定<0,所以并不是算出来的解析式一定可行。通过两个点算解析式的具体算法不赘述了,这属于初中的二次函数数学题了。
这个算法当然可以套上最优性剪枝,可以避免大量不必要的搜索。题目中给的m也可以用于剪枝(初值的设定)。
因为最优性剪枝事实上可以减去大量无用状态,所以这个搜索是可以通过n<=18的所有数据的。
算法二
对于算法一的改进:记忆化搜索,常见优化,不赘述了。
算法三
仔细思考可以发现,这个题目应该是可以状压DP的。
f[s]表示被覆盖的状态为s的最少小鸟数,然后预处理一个g[i][j]表示选择了i和j之后的抛物线经过的小鸟的状态集合(是一个01状态),
容易得出:
f[s|g[i][j]]=min(f[s|g[i][j]],f[s]+1)
状压DP的经典做法。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <string>
#include <ctime>
#include <queue>
#include <vector>
#include <cstdlib>
using namespace std;
typedef long long LL;
const int MAXN = ;
const double eps = 1e-;
int T,n,m,ans,dui[MAXN];
bool vis[MAXN];
double dd[MAXN][];
double hehe,lim;
bool ok;
struct node{ double x,y; }a[MAXN];
inline bool cmp(node q,node qq){ if(q.x==qq.x) return q.y<qq.y; return q.x<qq.x; }
inline double ABS(double x){ if(x<) return -x; return x; }
inline void dfs(int x,int num1,int num2,int use){
if(x==n+) { if(use<ans) ans=use; return ;}
double nowy; if(use>=ans) return ;
for(int i=;i<=num2;i++) {
nowy=a[x].x*a[x].x*dd[i][]+dd[i][]*a[x].x;
if(ABS(nowy-a[x].y)<=eps) { dfs(x+,num1,num2,use); return ; }
}
int now; double nowx,nowz; int nex=num2+;
for(int i=;i<=num1;i++) {
if(vis[i]) continue; now=dui[i]; if(a[now].x==a[x].x) continue;
nowx=a[now].x*a[now].x-a[now].x*a[x].x; nowz=a[now].y-a[x].y*a[now].x/a[x].x;
dd[nex][]=nowz/nowx; if(dd[nex][]>=-eps) continue;
dd[nex][]=(a[now].y-dd[nex][]*a[now].x*a[now].x)/a[now].x;
vis[i]=; dfs(x+,num1,nex,use);
vis[i]=;
} dui[num1+]=x; vis[num1+]=;
dfs(x+,num1+,num2,use+);
} inline void work(){
scanf("%d",&T);
while(T--) {
scanf("%d%d",&n,&m); for(int i=;i<=n;i++) scanf("%lf%lf",&a[i].x,&a[i].y); sort(a+,a+n+,cmp);
memset(vis,,sizeof(vis)); memset(dd,,sizeof(dd)); memset(dui,,sizeof(dui));
dui[]=; if(m!=) ans=n; else { ans=n/; if(n%!=) ans++; ans++; }
dfs(,,,); printf("%d\n",ans);
}
} int main()
{
work();
return ;
}
UOJ265 【NOIP2016】愤怒的小鸟的更多相关文章
- [NOIP2016]愤怒的小鸟 D2 T3 状压DP
[NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...
- 【洛谷P2831】[NOIP2016]愤怒的小鸟
愤怒的小鸟 题目链接 本来是刷状压DP的,然而不会.. 搜索是比较好想的,直接dfs就行了 我们可以知道两只猪确定一条抛物线 依次处理每一只猪,有以下几种方法: 1.先看已经建立的抛物线是否能打到这只 ...
- NOIP2016愤怒的小鸟 [状压dp]
愤怒的小鸟 题目描述 Kiana 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 (0,0) 处,每次 Kiana 可以用它向第一象限发射一只红色的小鸟, ...
- [NOIP2016]愤怒的小鸟
题目描述 Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形 ...
- Noip2016愤怒的小鸟(状压DP)
题目描述 题意大概就是坐标系上第一象限上有N只猪,每次可以构造一条经过原点且开口向下的抛物线,抛物线可能会经过某一或某些猪,求使所有猪被至少经过一次的抛物线最少数量. 原题中还有一个特殊指令M,对于正 ...
- [NOIP2016]愤怒的小鸟 D2 T3
Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可以用它向第一象限发射一只红色的小鸟,小鸟们的 ...
- luogu2831 [NOIp2016]愤怒的小鸟 (状压dp)
由范围可以想到状压dp 两个点(再加上原点)是可以确定一个抛物线的,除非它们解出来a>=0,在本题中是不合法的 这样的话,我们可以预处理出由任意两个点确定的抛物线所经过的所有的点(要特别规定一下 ...
- NOIP2016愤怒的小鸟 题解报告 【状压DP】
题目什么大家都清楚 题解 我们知道,三点确定一条抛物线,现在这条抛物线过原点,所以任意两只猪确定一条抛物线.通过运算的出对于两头猪(x1,y1),(x2,y2),他们所在抛物线a=(y1*x2-y2* ...
- [NOIP2016]愤怒的小鸟 状态压缩dp
题目描述 Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形 ...
- 洛谷 2831 (NOIp2016) 愤怒的小鸟——仅+1所以bfs优化
题目:https://www.luogu.org/problemnew/show/P2831 状压dp.跑得很慢.(n^2*2^n) 注意只打一只猪的情况. #include<iostream& ...
随机推荐
- 采用dlopen、dlsym、dlclose加载动态链接库【总结】(转)
1.前言 为了使程序方便扩展,具备通用性,可以采用插件形式.采用异步事件驱动模型,保证主程序逻辑不变,将各个业务已动态链接库的形式加载进来,这就是所谓的插件.linux提供了加载和处理动态链接库的系统 ...
- linux ISO/IMG make
sudo dd if=/PATH/*.ISO of=/dev/sdb 1.制作启动U盘需要sdb,不能sdb1,否则会提示isolinux.bin文件丢失 2.TF卡,设置sdb1?忘了 /* sy ...
- 让python在hadoop上跑起来
duang~好久没有更新博客啦,原因很简单,实习啦-好吧,我过来这边上班表示觉得自己简直弱爆了.第一周,配置环境:第二周,将数据可视化,包括学习了excel2013的一些高大上的技能,例如数据透视表和 ...
- HBase初探
string hbaseCluster = "https://charju.azurehdinsight.net"; string hadoopUsername = "账 ...
- js的原型链和constructor
转载:http://www.108js.com/article/article1/10201.html?id=1092 请先瞻仰上边的这篇文章. 对象的原型链: box.__proto__.__pro ...
- window 运行指令(1)
添加或删除程序 appwiz.cpl 管理工具 control admintools Bluetooth文件传送向导 fsquirt 计算器 calc 证书管理控制台 certmgr.msc 字符映射 ...
- Agreeing to the Xcode/iOS license requires admin privileges, please re-run as root via sudo
更新了xcode后使用goland运行项目时提示 Agreeing to the Xcode/iOS license requires admin privileges, please re-run ...
- Sublime Text 3 常用插件以及安装方法(vue 插件)
使用Package Control组件安装 也可以安装package control组件,然后直接在线安装: 按Ctrl+` 调出console 粘贴以下代码到底部命令行并回车: { import u ...
- C#中的数组,多维数组和交错数组
想研究一些面向对象的东西,也许是代码写得还不够多.感觉还不好,看那些教程,不是嫌太水就是太难看不懂.心情很是落寞 不过再怎样也要坚持每天发一篇博客. 这篇来说一下C#中的数组,多维数组,交错数组的一些 ...
- Beta--项目冲刺第七天
胜利在望-- 队伍:F4 成员:031302301 毕容甲 031302302 蔡逸轩 031302430 肖阳 031302418 黄彦宁 会议内容: 1.站立式会议照片: 2.项目燃尽图 3.冲刺 ...