matlab 功率谱分析

1、直接法:
直接法又称周期图法,它是把随机序列x(n)的N个观测数据视为一能量有限的序列,直接计算x(n)的离散傅立叶变换,得X(k),然后再取其幅值的平方,并除以N,作为序列x(n)真实功率谱的估计。
Matlab代码示例:
clear;
Fs=1000; %采样频率
n=0:1/Fs:1;
%产生含有噪声的序列
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));
window=boxcar(length(xn)); %矩形窗
nfft=1024;
[Pxx,f]=periodogram(xn,window,nfft,Fs); %直接法
plot(f,10*log10(Pxx));

2、间接法:
间接法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。
Matlab代码示例:
clear;
Fs=1000; %采样频率
n=0:1/Fs:1;
%产生含有噪声的序列
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));
nfft=1024;
cxn=xcorr(xn,'unbiased'); %计算序列的自相关函数
CXk=fft(cxn,nfft);
Pxx=abs(CXk);
index=0:round(nfft/2-1);
k=index*Fs/nfft;
plot_Pxx=10*log10(Pxx(index+1));
plot(k,plot_Pxx);

3、改进的直接法:
对于直接法的功率谱估计,当数据长度N太大时,谱曲线起伏加剧,若N太小,谱的分辨率又不好,因此需要改进。
3.1、Bartlett法
Bartlett平均周期图的方法是将N点的有限长序列x(n)分段求周期图再平均。
Matlab代码示例:
clear;
Fs=1000;
n=0:1/Fs:1;
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));
nfft=1024;
window=boxcar(length(n)); %矩形窗
noverlap=0; %数据无重叠
p=0.9; %置信概率
[Pxx,Pxxc]=psd(xn,nfft,Fs,window,noverlap,p);
index=0:round(nfft/2-1);
k=index*Fs/nfft;
plot_Pxx=10*log10(Pxx(index+1));
plot_Pxxc=10*log10(Pxxc(index+1));
figure(1)
plot(k,plot_Pxx);
pause;
figure(2)
plot(k,[plot_Pxx plot_Pxx-plot_Pxxc plot_Pxx+plot_Pxxc]);

3.2、Welch法
Welch法对Bartlett法进行了两方面的修正,一是选择适当的窗函数w(n),并再周期图计算前直接加进去,加窗的优点是无论什么样的窗函数均可使谱估计非负。二是在分段时,可使各段之间有重叠,这样会使方差减小。 
Matlab代码示例:
clear;
Fs=1000;
n=0:1/Fs:1;
xn=cos(2*pi*40*n)+3*cos(2*pi*100*n)+randn(size(n));
nfft=1024;
window=boxcar(100); %矩形窗
window1=hamming(100); %海明窗
window2=blackman(100); %blackman窗
noverlap=20; %数据无重叠
range='half'; %频率间隔为[0 Fs/2],只计算一半的频率
[Pxx,f]=pwelch(xn,window,noverlap,nfft,Fs,range);
[Pxx1,f]=pwelch(xn,window1,noverlap,nfft,Fs,range);
[Pxx2,f]=pwelch(xn,window2,noverlap,nfft,Fs,range);
plot_Pxx=10*log10(Pxx);
plot_Pxx1=10*log10(Pxx1);
plot_Pxx2=10*log10(Pxx2);

figure(1)
plot(f,plot_Pxx);

pause;

figure(2)
plot(f,plot_Pxx1);

pause;

figure(3)
plot(f,plot_Pxx2);

matlab 功率谱分析的更多相关文章

  1. MATLAB 随机过程基本理论

    一.平稳随机过程 1.严平稳随机过程 clc clear n=0:1000; x=randn(1,1001); subplot(211),plot(n,x); xlabel('n');ylabel(' ...

  2. MATLAB中FFT的使用方法

    MATLAB中FFT的使用方法 说明:以下资源来源于<数字信号处理的MATLAB实现>万永革主编 一.调用方法X=FFT(x):X=FFT(x,N):x=IFFT(X);x=IFFT(X, ...

  3. MATLAB处理信号得到频谱、相谱、功率谱

    (此帖引至网络资源,仅供参考学习)第一:频谱 一.调用方法 X=FFT(x):X=FFT(x,N):x=IFFT(X);x=IFFT(X,N) 用MATLAB进行谱分析时注意: (1)函数FFT返回值 ...

  4. [转载]MATLAB中FFT的使用方法

    http://blog.163.com/fei_lai_feng/blog/static/9289962200971751114547/ 说明:以下资源来源于<数字信号处理的MATLAB实现&g ...

  5. matlab 中fft的用法

    一.调用方法X=FFT(x):X=FFT(x,N):x=IFFT(X);x=IFFT(X,N) 用MATLAB进行谱分析时注意: (1)函数FFT返回值的数据结构具有对称性. 例:N=8;n=0:N- ...

  6. 通信原理实践(三)——FM调制

    一.FM调制 1.代码如下: clc,clear; fm = ; % 调制信号频率(Hz) Am = 0.5; % 调制信号幅度 fc = 5e3; % 载波频率(Hz) Ac = ; % 载波幅度 ...

  7. LabVIEW的优点

    知道Labview的英文全称是什么吗?Labview的创始公司的名字是什么吗?哈哈,其实这就是NI(National Instruments)美国国家仪器公司创造Labview的初衷:代替传统测量仪器 ...

  8. FFT算法的verilog实现

    首先需要明白傅里叶相关的基本知识:还是 借用这位英雄的文章,真心写的让人佩服不已http://blog.jobbole.com/70549/ 然后是卷积的理解http://blog.csdn.net/ ...

  9. matlab计算相对功率

    1.对脑电数据进行db4四层分解,因为脑电频率是在0-64HZ,分层后如图所示, 细节分量[d1 d2 d3 d4] 近似分量[a4] 重建细节分量和近似分量,然后计算对应频段得相对功率谱,重建出来得 ...

随机推荐

  1. IO系统性能之一:衡量性能的几个指标

    作为一个数据库管理员,关注系统的性能是日常最重要的工作之一,而在所关注的各方面的性能只能IO性能却是最令人头痛的一块,面对着各种生涩的参数和令人眼花缭乱的新奇的术语,再加上存储厂商的忽悠,总是让我们有 ...

  2. [原]ubuntu14.04 网卡逻辑修改没有文件/etc/udev/rules.d/70-persistent-net.rules

    -----问题出现------ 在新装的ubuntu14.04系统中没有发现文件/etc/udev/rule.d/70-persistent-net.rules, 无法修改网络的逻辑名称(即把第一张网 ...

  3. iOS获取手机型号,类似iphone 7这种 含swift和OC

    获取手机设备信息,如name.model.version等,但如果想获取具体的手机型号,如iphone5.5s这种,就需要如下这种 swift: func phonetype () -> Str ...

  4. Python使用QRCode模块生成二维码

    QRCode官网https://pypi.python.org/pypi/qrcode/5.1 简介python-qrcode是个用来生成二维码图片的第三方模块,依赖于 PIL 模块和 qrcode ...

  5. label与input间距的小问题

    先码后文 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3 ...

  6. 周五了啦啦啦啦-LAMP+PHP‘s OOP

    hi 周五咯~~ 1.LAMP配置完结篇 五.LAMP配置环境优化 5.4 虚拟主机工作原理 apache的虚拟主机.virtual-host 用不同的域名访问不同的目录——手动模拟dns 修改hos ...

  7. stanford coursera 机器学习编程作业 exercise 3(逻辑回归实现多分类问题)

    本作业使用逻辑回归(logistic regression)和神经网络(neural networks)识别手写的阿拉伯数字(0-9) 关于逻辑回归的一个编程练习,可参考:http://www.cnb ...

  8. AngularJS 控制器

    AngularJS 控制器 控制 AngularJS 应用程序的数据. AngularJS 控制器是常规的 JavaScript 对象. AngularJS 控制器 AngularJS 应用程序被控制 ...

  9. POJ 1724 ROADS【最短路/搜索/DP】

    一道写法多样的题,很具有启发性. 具体参考:http://www.cnblogs.com/scau20110726/archive/2013/04/28/3050178.html http://blo ...

  10. 树网的核[树 floyd]

    描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T ...