Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

Hint

As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

.

/*
矩阵快速幂裸题
*/
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn = ;
ll sz,mod,n,f[maxn],a[maxn],ans[maxn];
struct mtx{
ll v[maxn][maxn];
void cler(){
memset(v,,sizeof(v));
}
mtx mul(mtx A,mtx B){
mtx C;
C.cler();
for(int i = ;i <= sz;i++){
for(int j = ;j <= sz;j++){
for(int k = ;k <= sz;k++){
C.v[i][j] = (C.v[i][j] + A.v[i][k] * B.v[k][j]) % mod;
}
}
}
return C;
}
mtx mi(mtx A,int n){
mtx R;
R.cler();
for(int i = ;i <= sz;i++) R.v[i][i] = ;
while(n){
if(n&) R = R.mul(R,A);
n >>= ;
A = A.mul(A,A);
}
return R;
}
void get_tr(mtx A){
memset(ans,,sizeof(ans));
for(int i = ;i <= sz;i++){
for(int j = ;j <= sz;j++){
ans[j] = (ans[j] + f[i] * A.v[i][j]) % mod;
}
}
}
};
int main(){
sz = ;
mod = ;
f[] = f[] = ;
a[] = a[] = ;
mtx A;
while(){
cin>>n;
if(n == -){
return ;
}
if(n <= ){
if(n==) cout<<<<endl;
if(n==||n==) cout<<<<endl;
continue;
}
A.cler();
for(int i = ;i <= sz;i++) A.v[i][] = a[i];
for(int i = ;i <= sz;i++) A.v[i-][i] = ;
A = A.mi(A,n-sz);
A.get_tr(A);
cout<<ans[]<<endl;
}
return ;
}

poj3070 Fibonacci的更多相关文章

  1. POJ3070 Fibonacci[矩阵乘法]

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13677   Accepted: 9697 Descri ...

  2. POJ3070 Fibonacci[矩阵乘法]【学习笔记】

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13677   Accepted: 9697 Descri ...

  3. 矩阵十题【六】 poj3070 Fibonacci

    题目链接:http://poj.org/problem? id=3070 题目大意:给定n和10000,求第n个Fibonacci数mod 10000 的值,n不超过2^31. 结果保留四位数字. 非 ...

  4. poj3070 Fibonacci 矩阵快速幂

    学了线代之后 终于明白了矩阵的乘法.. 于是 第一道矩阵快速幂.. 实在是太水了... 这差不多是个模板了 #include <cstdlib> #include <cstring& ...

  5. POJ3070 Fibonacci(矩阵快速幂加速递推)【模板题】

    题目链接:传送门 题目大意: 求斐波那契数列第n项F(n). (F(0) = 0, F(1) = 1, 0 ≤ n ≤ 109) 思路: 用矩阵乘法加速递推. 算法竞赛进阶指南的模板: #includ ...

  6. 2018.09.25 poj3070 Fibonacci(矩阵快速幂)

    传送门 矩阵快速幂板题,写一道来练练手. 这一次在poj做题总算没忘了改万能库. 代码: #include<iostream> #include<cstdio> #define ...

  7. poj3070 Fibonacci(矩阵快速幂)

    矩阵快速幂基本应用. 对于矩阵乘法与递推式之间的关系: 如:在斐波那契数列之中 f[i] = 1*f[i-1]+1*f[i-2]  f[i-1] = 1*f[i-1] + 0*f[i-2].即 所以, ...

  8. POJ3070:Fibonacci(矩阵快速幂模板题)

    http://poj.org/problem?id=3070 #include <iostream> #include <string.h> #include <stdl ...

  9. 一些特殊的矩阵快速幂 hdu5950 hdu3369 hdu 3483

    思想启发来自, 罗博士的根据递推公式构造系数矩阵用于快速幂 对于矩阵乘法和矩阵快速幂就不多重复了,网上很多博客都有讲解.主要来学习一下系数矩阵的构造 一开始,最一般的矩阵快速幂,要斐波那契数列Fn=F ...

随机推荐

  1. dedecms /include/helpers/archive.helper.php SQL Injection Vul

    catalog . 漏洞描述 . 漏洞触发条件 . 漏洞影响范围 . 漏洞代码分析 . 防御方法 . 攻防思考 1. 漏洞描述 Dedecms会员中心注入漏洞 Relevant Link: http: ...

  2. 控件的invoke和beginInvoke方法

    System.Windows.Forms.Timer 的timer是在主线程上执行的,因此在timer的tick事件中操作界面上的控件不会发生线程的安全性检测. Control的invoke和begi ...

  3. 基本概率分布Basic Concept of Probability Distributions 5: Hypergemometric Distribution

    PDF version PMF Suppose that a sample of size $n$ is to be chosen randomly (without replacement) fro ...

  4. POJ 3735 Training little cats

    题意 维护一个向量, 有三种操作 将第\(i\)个数加1 将第\(i\)个数置0 交换第\(i\)个数和第\(j\)个数 Solution 矩阵乘法/快速幂 Implementation 我们将向量写 ...

  5. JavaWeb---总结(十七)JSP中的九个内置对象

    一.JSP运行原理 每个JSP 页面在第一次被访问时,WEB容器都会把请求交给JSP引擎(即一个Java程序)去处理.JSP引擎先将JSP翻译成一个_jspServlet(实质上也是一个servlet ...

  6. C#编写滤镜 图片色调取反效果(Invert)

    转自:http://www.it165.net/pro/html/201208/3469.html Invert 英文叫做颠倒.. 原理很简单也就是 将 255- 原本的值.. 这样 0(黑) 就会变 ...

  7. C#实现录制屏幕

    以前写过两篇录制麦克风语音和摄像头视频的文章(实现语音视频录制.在服务器端录制语音视频),最近有朋友问,如果要实现屏幕录制这样的功能,该怎么做了?实际上原理是差不多的,如果了解了我前面两篇文章中介绍的 ...

  8. ubuntu下安装TexLive和Texmaker

    也可以参考ubuntu14.04配置中文latex完美环境(texlive+texmaker+lyx) 设置中文字体的时候参考ubuntu 下安装 texlive 并设置 ctex 中文套装 1.首先 ...

  9. CSS 图片加载完成再淡入显示

    一.方法 加载完成再显示:借助Image对象的onload事件,加载完时再把src赋给img标签的src: 淡人显示:起始opacity为0,利用transform过度到1 二.代码 <!DOC ...

  10. pulltorefresh滚动到底部

    如果用ListView,让它滚动到顶部,一般是这样写的: if (!listView.isStackFromBottom()) { listView.setStackFromBottom(true); ...