BZOJ1922大陆争霸

思路:带限制的单源最短路

限制每个点的条件有二,路程和最早能进入的时间,那么对两个值一起限制跑最短路,显然想要访问一个点最少满足max(dis,time)

那么每次把相连的点以及所保护的点扔进堆中,用以更新答案,不过值得注意的是,入堆的时候进行判断

Code:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
#define p pair<int,int>
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 3010
#define maxm 70010
int n,m;
struct data{int to,next,w;}edge[maxm];
int l[maxn][maxn],lt[maxn],ll[maxn];
int head[maxn],cnt;
int S,T; void add(int u,int v,int w)
{
cnt++;
edge[cnt].next=head[u]; head[u]=cnt;
edge[cnt].to=v; edge[cnt].w=w;
} int dis1[maxn],dis2[maxn];
bool visit[maxn];
priority_queue<p,vector<p>,greater<p> >q;
void dijkstra()
{
memset(dis1,0x3f,sizeof(dis1));
q.push(make_pair(,S)); dis1[S]=;
while (!q.empty())
{
int now=q.top().second; q.pop();
if(visit[now]) continue; visit[now]=;
//printf("%d\n",now);
int dis=max(dis1[now],dis2[now]);
for (int i=head[now]; i; i=edge[i].next)
if (dis+edge[i].w<dis1[edge[i].to])
{
dis1[edge[i].to]=dis+edge[i].w;
int tmp=max(dis1[edge[i].to],dis2[edge[i].to]);
if(!ll[edge[i].to]) q.push(make_pair(tmp,edge[i].to));
}
//printf("%d\n",lt[now]);
for (int i=; i<=lt[now]; i++)
{
int noww=l[now][i]; ll[noww]--;
dis2[noww]=max(dis2[noww],dis);
if (!ll[noww]) q.push(make_pair(max(dis1[noww],dis2[noww]),noww));
}
}
} int main()
{
n=read(),m=read();
for (int i=; i<=m; i++)
{
int u=read(),v=read(),w=read();
if (u!=v) add(u,v,w);
}
for (int i=; i<=n; i++)
{
ll[i]=read();
for (int j=; j<=ll[i]; j++)
{
int x=read();
l[x][++lt[x]]=i;
}
}
S=;T=n;
dijkstra();
// for (int i=1; i<=n; i++)
// printf("%d %d\n",dis1[i],dis2[i]);
printf("%d\n",max(dis1[T],dis2[T]));
return ;
}

大陆争霸


BZOJ1923外星千足虫

思路:高斯消元解xor方程组

对于给出的信息,显然是一个方程组,对于方程组,考虑高斯消元求解,不过这里的方程组带取模,所以考虑位运算xor,套高斯消元即可

Code:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<bitset>
#include<cstring>
#include<cstdlib>
using namespace std;
bitset <> A[];
int B[],n,m,ans;
char s[];
int Gauss()
{
for (int i=; i<=n; i++)
{
int j=i;
while (j<=m && !A[j][i]) j++;
if (j==m+) return ;
ans=max(ans,j);
swap(A[i],A[j]);
for (int k=; k<=m; k++)
if (i!=k && A[k][i])
A[k]^=A[i];
}
return ;
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=; i<=m; i++)
{
scanf("%s%d",s,&B[i]);
for (int j=; j<=n-; j++) A[i][j+]=s[j]-'';
A[i][n+]=B[i];
}
int OK=Gauss();
if (!OK) {puts("Cannot Determine"); return ;}
printf("%d\n",ans);
for (int i=; i<=n; i++)
if (A[i][n+]) puts("?y7M#");
else puts("Earth");
return ;
}

外形千足虫


BZOJ1924所驼门王的宝藏

思路:Tarjan+拓扑图DP

首先将给出的各种关系相连,这里比较麻烦的是,需要用vector去记录行和列的情况,map判断八连通的情况

选择一个 横/竖 格向同 行/列 所有点连单向边,对 横/竖 格连双向边;八连通直接连;Tarjan并重构,做一个 傻傻的DP即可

Code:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
#include<map>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 100010
int dx[]={,,,,,-,-,-},dy[]={,-,,,-,,,-};
struct EdgeNode{int next,to;}edge[maxn*],road[maxn*];
int cnt,tot,head[maxn],last[maxn];
void addedge(int u,int v) {cnt++; edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].to=v;}
void insertedge(int u,int v) {if (u==v) return; addedge(u,v);}
void addroad(int u,int v) {tot++; road[tot].next=last[u]; last[u]=tot; road[tot].to=v;}
void insertroad(int u,int v) {addroad(u,v);}
int x[maxn],y[maxn],t[maxn],dfn[maxn],low[maxn],stack[maxn],num[maxn],belong[maxn],dp[maxn];
bool visit[maxn];
int n,r,c,ans,top,qcnt;
vector<int>h[maxn*],l[maxn*];
map<int,int>mp[maxn*];
void BuildGraph()
{
for (int i=; i<=r; i++)
{
int hn=h[i].size(),now=;
for (int j=; j<=hn-; j++) if (t[h[i][j]]==) {now=h[i][j]; break;}
for (int j=; j<=hn-; j++) {insertedge(now,h[i][j]); if (t[h[i][j]]==) insertedge(h[i][j],now);}
}
for (int i=; i<=c; i++)
{
int ln=l[i].size(),now=;
for (int j=; j<=ln-; j++) if (t[l[i][j]]==) {now=l[i][j]; break;}
for (int j=; j<=ln-; j++) {insertedge(now,l[i][j]); if (t[l[i][j]]==) insertedge(l[i][j],now);}
}
for (int i=; i<=n; i++)
if (t[i]==)
for (int xx,yy,j=; j<=; j++)
{
xx=x[i]+dx[j],yy=y[i]+dy[j];
if (mp[xx][yy]) insertedge(i,mp[xx][yy]);
}
}
void Tarjan(int x)
{
dfn[x]=low[x]=++tot; visit[x]=; stack[++top]=x;
for (int i=head[x]; i; i=edge[i].next)
{
if (!dfn[edge[i].to])
{
Tarjan(edge[i].to);
if (low[edge[i].to]<low[x]) low[x]=low[edge[i].to];
}
else
if(visit[edge[i].to] && dfn[edge[i].to]<low[x])
low[x]=dfn[edge[i].to];
}
if (dfn[x]==low[x])
{
int uu=; qcnt++;
while (x!=uu)
uu=stack[top--],num[qcnt]++,visit[uu]=,belong[uu]=qcnt;
}
}
void reBuildGraph()
{
for (int i=; i<=n; i++)
for (int j=head[i]; j; j=edge[j].next)
if (belong[i]!=belong[edge[j].to])
insertroad(belong[i],belong[edge[j].to]);
}
void DP(int now)
{
visit[now]=;
for (int i=last[now]; i; i=road[i].next)
{
if (!visit[road[i].to]) DP(road[i].to);
dp[now]=max(dp[now],dp[road[i].to]);
}
dp[now]+=num[now];
ans=max(ans,dp[now]);
}
int main()
{
n=read(); r=read(); c=read();
for (int i=; i<=n; i++)
{
x[i]=read(),y[i]=read(),t[i]=read();
mp[x[i]][y[i]]=i; h[x[i]].push_back(i); l[y[i]].push_back(i);
}
BuildGraph();
for (int i=; i<=n; i++) if (!dfn[i]) Tarjan(i);
reBuildGraph();
for (int i=; i<=qcnt; i++) if (!visit[i]) DP(i);
printf("%d\n",ans);
return ;
}

所驼门王的宝藏


BZOJ1925地精部落

思路:DP 抖动子序列

f[i][j]表示以j为开头的长度为i的抖动子序列个数,这种序列有些性质:

1.在一个1-n的排列构成的抖动序列里,交换任意的元素i和i+1,它仍然是符合条件的抖动序列 
2.一个开头上升的抖动序列翻转过来就变成了符合条件的开头下降的

那么就可以转移了$f[i][j]=f[i-1][j]+f[i-1][i-j]$,最后的结果当然就是$f[n][n]*2$ 还有就是这题需要滚动数组

Code:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 5010
int n,p;
int f[][maxn];
int main()
{
n=read(),p=read();
f[][]=;
for (int i=; i<=n; i++)
for (int j=; j<=i; j++)
f[i&][j]=(f[i&][j-]%p+f[(i&)^][i-j]%p)%p;
printf("%d\n",(f[n&][n]*)%p);
return ;
}

地精部落


BZOJ1926粟粟的书架

思路:前缀和  主席树  二合一  (二维莫队)

用二合一的方法水过这道题,对于行数=1的情况,很显然裸主席树;对于矩阵的情况,范围允许$n^{2}$的,考虑预处理两个二维的前缀和

sum[i][j][k]表示>=k的数的和,num[i][j][k]表示>=k的数的个数 那么询问的时候二分一下就好

Code:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-')f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
int R,C,M;
#define maxn 500010
int Sum[maxn*],Num[maxn*],ll[maxn*],rr[maxn*],root[maxn<<],sz;
int sum[][][],num[][][],p[][];
void Insert(int l,int r,int &now,int fat,int val)
{
now=++sz; Sum[now]=Sum[fat]+val; Num[now]=Num[fat]+;
if (l==r) return;
ll[now]=ll[fat],rr[now]=rr[fat];
int mid=(l+r)>>;
if (val<=mid) Insert(l,mid,ll[now],ll[fat],val);
else Insert(mid+,r,rr[now],rr[fat],val);
}
int Query(int l,int r,int L,int R,int kth)
{
if (Sum[root[R]]-Sum[root[L-]]<kth) return -;
L=root[L-]; R=root[R];
int re=;
while (l<r)
{
int mid=(l+r)>>,tmp=Sum[rr[R]]-Sum[rr[L]];
if (tmp<kth) {re+=Num[rr[R]]-Num[rr[L]]; kth-=tmp; r=mid; L=ll[L]; R=ll[R];}
else {l=mid+; L=rr[L]; R=rr[R];}
}
re+=(kth+l-)/l;
return re;
}
void Part1()
{
for (int i=; i<=C; i++) Insert(,,root[i],root[i-],read());
while (M--)
{
int x1=read(),y1=read(),x2=read(),y2=read(),h=read();
int ans=Query(,,y1,y2,h);
if (ans==-) {puts("Poor QLW"); continue;}
printf("%d\n",ans);
}
}
int GetSum(int x1,int y1,int x2,int y2,int k) {return sum[x1-][y1-][k]+sum[x2][y2][k]-sum[x1-][y2][k]-sum[x2][y1-][k];}
int GetNum(int x1,int y1,int x2,int y2,int k) {return num[x1-][y1-][k]+num[x2][y2][k]-num[x1-][y2][k]-num[x2][y1-][k];}
void Part2()
{
int maxx=;
for (int i=; i<=R; i++)
for (int j=; j<=C; j++)
p[i][j]=read(),maxx=max(maxx,p[i][j]);
for (int i=; i<=R; i++)
for (int j=; j<=C; j++)
for (int k=; k<=maxx; k++)
num[i][j][k]=num[i-][j][k]+num[i][j-][k]-num[i-][j-][k]+(p[i][j]>=k?:),
sum[i][j][k]=sum[i-][j][k]+sum[i][j-][k]-sum[i-][j-][k]+(p[i][j]>=k?p[i][j]:);
while (M--)
{
int x1=read(),y1=read(),x2=read(),y2=read(),h=read();
int l=,r=maxx+,k=-;
while (l+<r)
{
int mid=(l+r)>>;
if (GetSum(x1,y1,x2,y2,mid)>=h) l=mid,k=mid; else r=mid;
}
if (k==-) {puts("Poor QLW"); continue;}
printf("%d\n",GetNum(x1,y1,x2,y2,k)-(GetSum(x1,y1,x2,y2,k)-h)/k);
}
}
int main()
{
R=read(),C=read(),M=read();
if (R==) Part1(); else Part2();
return ;
}

粟粟的书架


BZOJ1927星际竞速

思路:最小费用流

每个星球拆成两个点,入点$u_{i}$出点$v_{i}$

$S-->u_{i}$  容量为1,费用为0;

$S-->v_{i}$  容量为1,费用为0;

$v_{i}-->T$  容量为1,费用为0;

读入U,V,C如果$V>U$则交换,$U_{u_{i}}-->V_{v_{i}}$  容量为1,费用为C;

Code:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define inf 0x7fffffff
struct data{
int next,to,v,c;
}edge[];
int cnt=,head[];
int q[],h,t;
bool mark[];
bool visit[];
int n,m;
int ans,num;
int dis[]; int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
} void add(int u,int v,int cap,int cost)
{
cnt++;edge[cnt].to=v;
edge[cnt].next=head[u];head[u]=cnt;
edge[cnt].v=cap;edge[cnt].c=cost;
} void insert(int u,int v,int cap,int cost)
{
add(u,v,cap,cost);add(v,u,,-cost);
} bool spfa()
{
memset(visit,,sizeof(visit));
for (int i=; i<=num; i++) dis[i]=inf;
h=,t=;
q[]=num;visit[num]=;dis[num]=;
while (h<t)
{
int now=q[h];h++;visit[now]=;
for (int i=head[now]; i; i=edge[i].next)
if (edge[i^].v && dis[now]-edge[i].c<dis[edge[i].to])
{
dis[edge[i].to]=dis[now]-edge[i].c;
if (!visit[edge[i].to])
{
visit[edge[i].to]=;
q[t++]=edge[i].to;
}
}
}
return dis[]!=inf;
} int dfs(int loc,int low)
{
mark[loc]=;
if (loc==num) return low;
int w,used=;
for (int i=head[loc]; i; i=edge[i].next)
if (dis[edge[i].to]==dis[loc]-edge[i].c && edge[i].v && !mark[edge[i].to])
{
w=dfs(edge[i].to,min(low-used,edge[i].v));
ans+=w*edge[i].c;
edge[i].v-=w;edge[i^].v+=w;
used+=w;if (used==low) return low;
}
return used;
} void zkw()
{
int tmp=;
while (spfa())
{
mark[num]=;
while (mark[num])
{
memset(mark,,sizeof(mark));
tmp+=dfs(,inf);
}
}
} int main()
{
n=read();m=read();num=*n+;
for (int i=; i<=n; i++)
{
int cost=read();
insert(,i,,);
insert(i+n,num,,);
insert(,i+n,,cost);
}
for (int i=; i<=m; i++)
{
int x=read(),y=read(),z=read();
if (x>y) {int temp=x;x=y;y=temp;}
insert(x,y+n,,z);
}
zkw();
printf("%d\n",ans);
return ;
}

星际竞速


BZOJ1941Hide and Seek

思路: KD-Tree

把所有点加入KD-Tree,然后枚举每个点去找他的最远、最近点,并更新答案

需要注意的是,计算最远和最近的两个分开写,而且计算最近点的时候不能计算到自己

Code:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-')f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define inf 0x7fffffff
#define maxn 500010
int n,D,ans;
struct PointNode
{
int l,r; int d[],maxx[],minn[];
PointNode (int x=,int y=) {l=r=; d[]=x,d[]=y;}
bool operator < (const PointNode & A) const {return d[D]<A.d[D];}
}p[maxn];
int dis(PointNode A,PointNode B) {return abs(A.d[]-B.d[])+abs(A.d[]-B.d[]);}
struct KDTreeNode
{
PointNode tree[maxn<<],Point;
int rt,ansMax,ansMin;
void Update(int now)
{
for (int i=; i<=; i++)
{
tree[now].minn[i]=tree[now].maxx[i]=tree[now].d[i];
if (tree[now].l)
tree[now].minn[i]=min(tree[tree[now].l].minn[i],tree[now].minn[i]),
              tree[now].maxx[i]=max(tree[tree[now].l].maxx[i],tree[now].maxx[i]);
if (tree[now].r)
tree[now].minn[i]=min(tree[tree[now].r].minn[i],tree[now].minn[i]),
              tree[now].maxx[i]=max(tree[tree[now].r].maxx[i],tree[now].maxx[i]);
}
}
int BuildTree(int l,int r,int dd)
{
int mid=(l+r)>>;
D=dd; nth_element(p+l,p+mid,p+r+);
tree[mid]=p[mid];
for (int i=; i<=; i++) tree[mid].minn[i]=tree[mid].maxx[i]=tree[mid].d[i];
if (l<mid) tree[mid].l=BuildTree(l,mid-,dd^);
if (r>mid) tree[mid].r=BuildTree(mid+,r,dd^);
Update(mid);
return mid;
}
int disMax(int now)
{
if (!now) return -inf;
int re=;
for (int i=; i<=; i++)
re+=max(abs(tree[now].maxx[i]-Point.d[i]),abs(tree[now].minn[i]-Point.d[i]));
return re;
}
int disMin(int now)
{
if (!now) return inf;
int re=;
for (int i=; i<=; i++) re+=max(,tree[now].minn[i]-Point.d[i]);
for (int i=; i<=; i++) re+=max(,Point.d[i]-tree[now].maxx[i]);
return re;
}
void GetMax(int now)
{
if (!now) return;
int dl,dr,d0;
d0=dis(tree[now],Point);
ansMax=max(d0,ansMax);
if (tree[now].l) dl=disMax(tree[now].l);
if (tree[now].r) dr=disMax(tree[now].r);
if (dl>dr)
{
if (dl>ansMax) GetMax(tree[now].l);
if (dr>ansMax) GetMax(tree[now].r);
}
else
{
if (dr>ansMax) GetMax(tree[now].r);
if (dl>ansMax) GetMax(tree[now].l);
}
}
void GetMin(int now)
{
if (!now) return;
int dl,dr,d0;
d0=dis(tree[now],Point);
if (d0) ansMin=min(ansMin,d0);
if (tree[now].l) dl=disMin(tree[now].l);
if (tree[now].r) dr=disMin(tree[now].r);
if (dl<dr)
{
if (dl<ansMin) GetMin(tree[now].l);
if (dr<ansMin) GetMin(tree[now].r);
}
else
{
if (dr<ansMin) GetMin(tree[now].r);
if (dl<ansMin) GetMin(tree[now].l);
}
}
int QueryMax(PointNode P) {Point=P; ansMax=-inf; GetMax(rt); return ansMax;}
int QueryMin(PointNode P) {Point=P; ansMin=inf; GetMin(rt); return ansMin;}
}KDTree;
int main()
{
n=read();
for (int x,y,i=; i<=n; i++) x=read(),y=read(),p[i].d[]=x,p[i].d[]=y;
for (int i=; i<=; i++) p[].maxx[i]=-inf,p[].minn[i]=inf;
KDTree.rt=KDTree.BuildTree(,n,);
ans=inf;
for (int i=; i<=n; i++)
{
int minn=KDTree.QueryMin(p[i]),maxx=KDTree.QueryMax(p[i]);
ans=min(ans,maxx-minn);
}
printf("%d\n",ans);
return ;
}

Hide and Seek


BZOJ1951古代猪文

思路:组合数取模Lucas定理、中国剩余定理

首先弄清楚求解的东西:$G^{\sum_{d|n}C_{n}^{d}} mod 999911659$

这个东西,设指数为M,模数为P,经过费马小定理可以转化一下:$G^{M}modP=G^{Mmod(P-1)}(G!=P)$

这里$P-1$不是质数,所以把它拆成多个质数的形式,最后用中国剩余定理合并即可

Code:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath> using namespace std;
int pp[]={,,,};int G,N,P=;
int jc[][];
int M[]; void exgcd(int a,int b,int &x,int &y)
{
if (b==) {x=;y=;return;}
exgcd(b,a%b,x,y);
int tmp=x;x=y;y=tmp-a/b*y;
} int quick_pow(long long a,int b,int p)
{
int ans=;
for(int i=b;i;i>>=,a=(a*a)%p)
if(i&)ans=(ans*a)%p;
return ans;
} void cs()
{
jc[][]=jc[][]=jc[][]=jc[][]=;
for (int i=; i<; i++)
for (int j=; j<=pp[i]; j++)
jc[i][j]=(jc[i][j-]*j)%pp[i];
}
int C(int n,int m,int p)
{
if (n<m) return ;
return jc[p][n]*quick_pow(jc[p][m]*jc[p][n-m],pp[p]-,pp[p])%pp[p];
}
int lucas(int n,int m,int p)
{
if (m==) return ;
return C(n%pp[p],m%pp[p],p)*lucas(n/pp[p],m/pp[p],p)%pp[p];
} int china()
{
int a1,b1,a2,b2,a,b,c,x,y;
a1=pp[],b1=M[];
for(int i=;i<;i++)
{
a2=pp[i],b2=M[i];
a=a1;b=a2;c=b2-b1;
exgcd(a,b,x,y);
x=((c*x)%b+b)%b;
b1=b1+a1*x;
a1=a1*b;
}
return b1;
} int work()
{
G%=P;
for (int i=; i*i<=N; i++)
{
if (N%i==)
{
int tmp=N/i;
for (int j=; j<; j++)
{
if (tmp!=i)
M[j]=(M[j]+lucas(N,i,j))%pp[j];
M[j]=(M[j]+lucas(N,tmp,j))%pp[j];
}
}
}
printf("%d\n",quick_pow(G,china(),P));
} int main()
{
cs();
scanf("%d%d",&N,&G);
if (G==P) {puts("");return ;}
work();
return ;
}

古代猪文


BZOJ1952城市规划

思路: 仙人掌DP  最大点权独立集

求解最大点权独立集,然后仔细读样例发现,这里的“独立集”不同于平常的独立集,即不能选中间隔着一个的两个点

那么对于正常的求解方法是dp[i][0/1]表示当前到i位,选或不选的答案,这里就带限制的dp[i][0/1/2]去进行dp即可,转移是类似的

对仙人掌的处理方法一样是找环,拆环单独DP

Code:

自己的正确版

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxn 1000100
struct EdgeNode{int to,next;}edge[maxn<<];
int head[maxn],cnt;
void add(int u,int v) {cnt++; edge[cnt].next=head[u]; head[u]=cnt; edge[cnt].to=v;}
void insert(int u,int v) {add(u,v); add(v,u);}
int deep[maxn],fa[maxn],dfn[maxn],low[maxn],dp1[maxn][],dp2[maxn][],ring[maxn],HX[maxn],t;
int n,m,ans; void CactusDP(int st,int tt)
{
ring[]=tt; int zz=;
while (ring[zz]!=st) {ring[zz+]=fa[ring[zz]]; zz++;}
//printf("Num=%d :",zz);
//for (int i=1; i<=zz; i++) printf("%d ->",ring[i]); printf("\n");
int f0=,f1=,f2=;
for (int opt=; opt<=; opt++)
{
dp2[][]=dp2[][]=dp2[][]=;
dp2[][opt]=dp1[tt][opt];
if (opt==) dp2[][]=dp2[][];
for (int i=; i<=zz; i++)
dp2[i][]=dp2[i-][]+dp1[ring[i]][],
dp2[i][]=max(max(dp2[i-][],dp2[i-][])+dp1[ring[i]][],dp2[i-][]+dp1[ring[i]][]),
dp2[i][]=max(dp2[i-][],dp2[i-][])+dp1[ring[i]][];
if (opt==) f1=max(f1,dp2[zz][]);
if (opt==) f1=max(f1,dp2[zz][]),f2=max(f2,dp2[zz][]);
if (opt==) f1=max(f1,dp2[zz][]),f0=max(f0,dp2[zz][]),f2=max(f2,dp2[zz][]);
}
dp1[st][]=f0; dp1[st][]=f1; dp1[st][]=f2;
} void TreeDP(int now)
{
dfn[now]=low[now]=++t;
dp1[now][]=; dp1[now][]=HX[now]; int maxx=;
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].to!=fa[now])
{
if (deep[edge[i].to]) {low[now]=min(dfn[edge[i].to],low[now]); continue;}
fa[edge[i].to]=now; deep[edge[i].to]=deep[now]+;
TreeDP(edge[i].to);
if (low[edge[i].to]>low[now])
dp1[now][]+=max(dp1[edge[i].to][],dp1[edge[i].to][]),
dp1[now][]+=dp1[edge[i].to][],
maxx=max(maxx,dp1[edge[i].to][]-max(dp1[edge[i].to][],dp1[edge[i].to][]));
low[now]=min(low[now],low[edge[i].to]);
}
dp1[now][]=maxx+dp1[now][];
for (int i=head[now]; i; i=edge[i].next)
if (low[edge[i].to]==dfn[now] && edge[i].to!=fa[now] && deep[edge[i].to]!=deep[now]+)
CactusDP(now,edge[i].to);
} void Freopen() {freopen("area.in","r",stdin); freopen("area.out","w",stdout);}
void Fclose() {fclose(stdin); fclose(stdout);} int main()
{
//Freopen();
n=read(),m=read();
for (int i=; i<=n; i++) HX[i]=read();
for (int u,v,i=; i<=m; i++) u=read(),v=read(),insert(u,v);
for (int i=; i<=n; i++) if (!dfn[i]) {fa[i]=i,deep[i]=; TreeDP(i); ans+=max(dp1[i][],max(dp1[i][],dp1[i][]));}
printf("%d\n",ans);
//Fclose();
return ;
}

Area

错误的标算

#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std; const int N = , inf = ~0U >> ; #define forEdges(iter,u) for(edge* iter = e[u]; iter; iter = iter->n)
struct edge { int t; edge *n; }
ebf[N << ], *e[N], *ec = ebf; int weight[N], n;
int dfn[N], low[N], S[N], sTop, dTime;
int f[N][], rf[N][], id[N], opt[N]; inline void updateN (int &x, int y) { if (x > y) x = y; }
inline void updateX (int &x, int y) { if (x < y) x = y; } inline void dfs (int u, int au)
{
int v;
dfn[u] = low[u] = ++dTime, S[++sTop] = u;
forEdges(it, u) if ((v = it->t) != au)
if (!dfn[v]) dfs(v, u), updateN(low[u], low[v]);
else updateN(low[u], dfn[v]);
int maxDelt();
f[u][] = , f[u][] = weight[u];
forEdges(it, u) if ((v = it->t) != au && low[v] > dfn[u]) // Sons
{
f[u][] += max(f[v][], f[v][]);
f[u][] += f[v][];
updateX(maxDelt, f[v][] - max(f[v][], f[v][]));
}
f[u][] = f[u][] + maxDelt; forEdges(it, u) if (low[it->t] == dfn[u]) // A ring
{
int rs = ;
while (S[sTop] != u) id[++rs] = S[sTop--];
id[++rs] = u;
/* RingDP : Line 53 .. 55 */
int f0 = , f1 = , f2 = ;
for (int st = ; st <= ; ++st)
{
rf[][] = rf[][] = rf[][] = ;
rf[][st] = f[id[]][st];
if (st == ) rf[][] = rf[][];
for (int i = ; i <= rs; ++i)
{ //RingDP
rf[i][] = f[id[i]][] + rf[i - ][];
rf[i][] = max(f[id[i]][] + max(rf[i - ][], rf[i - ][]), f[id[i]][] + rf[i - ][]);
rf[i][] = f[id[i]][] + max(rf[i - ][], rf[i - ][]);
}
switch (st)
{
case : updateX(f1, rf[rs][]); break; //!!
case : updateX(f1, rf[rs][]), updateX(f2, rf[rs][]); break;
case : updateX(f0, rf[rs][]), updateX(f1, rf[rs][]), updateX(f2, rf[rs][]); break;
}
}
f[u][] = f0, f[u][] = f1, f[u][] = f2;
} if (dfn[u] == low[u]) while (S[sTop + ] != u) --sTop;
opt[u] = max(f[u][], max(f[u][], f[u][]));
} int main ()
{
int m, a, b;
// freopen("area.in", "r", stdin);
// freopen("area.out", "w", stdout);
scanf("%d%d", &n, &m);
for (int i = ; i <= n; ++i) scanf("%d", weight + i);
while (m--)
{
scanf("%d%d", &a, &b);
*ec = (edge){b, e[a]}; e[a] = ec++;
*ec = (edge){a, e[b]}; e[b] = ec++;
}
int res = ;
for (int i = ; i <= n; ++i)
if (!dfn[i]) dfs(i, ), res += opt[i]; //A Connected Component
printf("%d\n", res);
return ;
}

Area-std


BZOJ1972猪国杀

思路:大模拟

Code:

迟迟不敢动手

猪国杀


BZOJ1974auction代码拍卖会

思路:DP、组合数学

发现从左到右每一位不减,那么有个不错的性质,可以组成的数,拆成${1,11,111,1111....}$中取$<=8$个数组合出来

而这些数%p,最多有p种可能,那么找循环,DP,用组合数计算一下答案即可

那么方程就是$dp[i][j][k]$表示前i种可能选了j个,组合出来的数%p结果为k的方案数

Code:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define mod 999911659
long long n;int p,a,ans;
long long dp[][][],inv[],c[][],data[],cnt[];
long long C(long long x,int y)
{
if (y>x) return ;
long long re=;
for (long long i=x-y+; i<=x; i++)
(re*=(i%mod))%=mod;
return re*inv[y]%mod;
}
void GetInv()
{
inv[]=,inv[]=;
for (int i=; i<=; i++)
inv[i]=(mod-mod/i)*inv[mod%i]%mod;
for (int i=; i<=; i++)
inv[i]=inv[i]*inv[i-]%mod;
}
int main()
{
scanf("%lld%d",&n,&p);
GetInv();
int x=%p,sz=;
while (!cnt[x]) {cnt[x]=++sz; data[sz]=x; if (sz>=n) break; x=(x*+)%p;}
if (sz!=n)
{
long long N=n-cnt[x]+; int SZ=sz-cnt[x]+;
if (SZ>) a=(p-data[cnt[x]+(N%SZ?N%SZ:SZ)-])%p;
else a=(p-data[cnt[x]])%p;
for (int i=,t=cnt[x]; i<p; i++)
if (cnt[i])
if (cnt[i]<t) cnt[i]=;
else
if (SZ> && (N%SZ)>cnt[i]-t)
cnt[i]=N/SZ+; else cnt[i]=N/SZ;
}
else
{
a=(p-x)%p;
for (int i=; i<p; i++) if (cnt[i]) cnt[i]=;
}
for (int i=; i<p; i++)
for (int j=; j<; j++)
if (cnt[i]) c[i][j]=C(cnt[i]+j-,j);
dp[][][]=;
int now=;
for (int i=; i<p; i++)
if (cnt[i])
{
now^=;
for (int j=; j<; j++)
for (int k=; k<p; k++)
dp[now][j][k]=dp[now^][j][k];
for (int j=; j<; j++)
for (int k=; k<p; k++)
if (dp[now^][j][k])
for (int l=; l<-j; l++)
(dp[now][j+l][(k+l*i)%p]+=dp[now^][j][k]*c[i][l]%mod)%=mod;
}
for (int i=; i<; i++)
ans=(ans+dp[now][i][a])%mod;
printf("%d\n",ans);
return ;
}

auction代码拍卖会


BZOJ1975魔法猪学院

思路:A*求K短路

大体的思路就是: 首先需要求出每个点到T的最短路径,要求它需要: 
1.先建出当前图的反图,即每个边的反向边。 
2.用反向边做一遍SPFA,dis数组存储的即是当前点到T的最短距离; 然后建立估价函数,利用估价函数去维护一个堆,此处使用STL里的Priority_Queue; 
不断的入队出队,当T出队次数达到K次,即返回值。即为所求K短路;

会求k短路之后,就每次求k短并相减即可;

Code:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define maxm 200010
#define maxn 5010
struct data{int to,next;double power;}edge[maxm],reedge[maxm];
int head[maxn],cnt;int rehead[maxn],recnt;
int n,m,S,T,ans;
double po; void add(int u,int v,double p)
{
cnt++;
edge[cnt].next=head[u]; head[u]=cnt;
edge[cnt].to=v; edge[cnt].power=p;
recnt++;
reedge[recnt].next=rehead[v]; rehead[v]=recnt;
reedge[recnt].to=u; reedge[recnt].power=p;
} double dis[maxn];
#define inf 1000000001.0
inline void spfa()
{
queue<int>q;
bool visit[maxn]; memset(visit,,sizeof(visit));
for (int i=S; i<=T; i++) dis[i]=inf;
q.push(T); dis[T]=0.0; visit[T]=;
while (!q.empty())
{
int now=q.front(); q.pop();
for (int i=rehead[now]; i; i=reedge[i].next)
if (dis[now]+reedge[i].power<dis[reedge[i].to])
{
dis[reedge[i].to]=dis[now]+reedge[i].power;
if (!visit[reedge[i].to])
{
q.push(reedge[i].to);
visit[reedge[i].to]=;
}
}
visit[now]=;
}
} struct node{
double g; int v;
node() {}
node(double x,int y):g(x),v(y){}
bool operator < (const node & A) const
{
return g+dis[v]>A.g+dis[A.v];
}
}; inline void Astar()
{
priority_queue<node>Q;
Q.push(node(0.0,S));
while(po> && !Q.empty())
{
node cur=Q.top(); Q.pop();
for(int i=head[cur.v]; i; i=edge[i].next)
{
node A; A.g=edge[i].power+cur.g; A.v=edge[i].to;
Q.push(A);
}
if (cur.v==T)
{
po-=cur.g; if (po<) return; ans++;
}
}
} int main()
{
n=read(); m=read(); scanf("%lf",&po);
for (int i=; i<=m; i++)
{
int u=read(),v=read(); double p;
scanf("%lf",&p); add(u,v,p);
}
S=; T=n;
spfa();
Astar();
printf("%d\n",ans);
return ;
}

魔法猪学院


【SDOI2010题集整合】BZOJ1922~1927&1941&1951&1952&1972&1974&1975的更多相关文章

  1. ACM题集以及各种总结大全!

    ACM题集以及各种总结大全! 虽然退役了,但是整理一下,供小弟小妹们以后切题方便一些,但由于近来考试太多,顾退役总结延迟一段时间再写!先写一下各种分类和题集,欢迎各位大牛路过指正. 一.ACM入门 关 ...

  2. 全国各大 oj 分类题集...

    各种题集从易到难刷到手软  你准备好了吗? 准备剁手吧

  3. ACM题集以及各种总结大全(转)

    ACM题集以及各种总结大全! 虽然退役了,但是整理一下,供小弟小妹们以后切题方便一些,但由于近来考试太多,顾退役总结延迟一段时间再写!先写一下各种分类和题集,欢迎各位大牛路过指正. 一.ACM入门 关 ...

  4. 组合数取模&&Lucas定理题集

    题集链接: https://cn.vjudge.net/contest/231988 解题之前请先了解组合数取模和Lucas定理 A : FZU-2020  输出组合数C(n, m) mod p (1 ...

  5. Bug是一种财富-------研发同学的错题集、测试同学的遗漏用例集

    此文已由作者王晓明授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 各位看官,可能看到标题的你一定认为这是一篇涉嫌"炒作"的文章,亦或是为了吸引眼球而起的标 ...

  6. 数位dp题集

    题集见大佬博客 不要62 入门题,检验刚才自己有没有看懂 注意一些细节. 的确挺套路的 #include<bits/stdc++.h> #define REP(i, a, b) for(r ...

  7. 二级C语言题集

    时间:2015-5-13 18:01 在131题之后是按考点分类的题集,有需要的朋友可以看一下 ---------------------------------------------------- ...

  8. 【转】并查集&MST题集

    转自:http://blog.csdn.net/shahdza/article/details/7779230 [HDU]1213 How Many Tables 基础并查集★1272 小希的迷宫 基 ...

  9. 【转】Tarjan&LCA题集

    转自:http://blog.csdn.net/shahdza/article/details/7779356 [HDU][强连通]:1269 迷宫城堡 判断是否是一个强连通★2767Proving ...

随机推荐

  1. js数组操作

    用 js有很久了,但都没有深究过js的数组形式.偶尔用用也就是简单的string.split(char).这段时间做的一个项目,用到数组的地方很多, 自以为js高手的自己居然无从下手,一下狠心,我学! ...

  2. KeyBord事件从Activtiy层往下分发详细过程代码示例

    step1:调用Activity成员函数dispatchKeyEvent public boolean dispatchKeyEvent(KeyEvent event) { // Let action ...

  3. 【WPF】TextBox样式重写注意事项

    1.普通控件重写需要添加一行 <ContentPresenter HorizontalAlignment="Center" VerticalAlignment="C ...

  4. swift-sharesdk集成微信、Facebook第三方登录

    好久没有写博客了.最近忙得没有时间更新博客,很忙很忙. 今天就把自己做过的第三方集成和大家分享一下,请大家多多指教. 第一步: 一.获取AppKey(去官方平台注册) 二.下载SDK 三.快速集成 第 ...

  5. Linux学习笔记-Ubuntu添加右键菜单打开终端

    1.进入个人目录(如/home/batsing,下文缩写成 ~ ):设置显示隐藏文件,或使用命令行:2.进入 ~/.gnome2/nautilus-scripts 文件夹,新建一个文件,名为 term ...

  6. JavaScript的attribute和property辨析

    1.Attribute Attribute是HTML上设置的属性,在html中显式地设置,或者通过setAttribute()方法设置. <input type='text' id='txt' ...

  7. Ace - Responsive Admin Template

    Ace简介: Ace 是一个轻量.功能丰富.HTML5.响应式.支持手机及平板电脑上浏览的管理后台模板,基于CSS框架Bootstrap制作,Bootstrap版本更新至 3.0,Ace – Resp ...

  8. [MCSM]随机搜索和EM算法

    1. 概述 本节将介绍两类问题的不同解决方案.其一是通过随机的搜索算法对某一函数的取值进行比较,求取最大/最小值的过程:其二则和积分类似,是使得某一函数被最优化,这一部分内容的代表算法是EM算法.(书 ...

  9. Android Studio单元测试入门

    Android Studio单元测试入门 通常在开发Android app的时候经常会写一些小函数并验证它是否运行正确,通常做法我们是把这个函数放到某个界面(Activity上)执行一下,运行整个工程 ...

  10. ASP.NET MVC3入门教程之第一个WEB应用程序

    本文转载自:http://www.youarebug.com/forum.php?mod=viewthread&tid=91&extra=page%3D1 上一节,我们已经搭建好了AS ...