%%matlab实现hog特征
%修改自http://www.cnblogs.com/tiandsp/archive/2013/05/24/3097503.html
%input: img
%output: final_descriptor clear all; close all; clc; %img=double(imread('lena.jpg'));
%img=imread('man.png');
img=imread('e:/work/matlab/data/252.jpg');
img=rgb2gray(img); %简单起见,彩图转灰度图。后续可以改进。
img=imresize(img, [128 64]);
img=double(img); [h, w, ~] = size(img); %下面是求cell
cell_size=8; %step*step个像素作为一个cell. cell_size=pixels_per_cell
orient=9; %方向直方图包含的方向数
angle_range=180/orient; %每个方向包含的角度数 h=round(h/cell_size)*cell_size;
w=round(w/cell_size)*cell_size;
img=img(1:h,1:w,:); %img = sqrt(img); %伽马校正。J=AI^r 此处取A=1,r=0.5 % 下面是求边缘
fy=[-1 0 1]; %定义竖直模版
fx=fy'; %定义水平模版 Gy=imfilter(img, fy, 'replicate'); %竖直梯度
Gx=imfilter(img, fx, 'replicate'); %水平梯度
Gmag=sqrt(Gx.^2+Gy.^2); %梯度幅值 %为每个cell计算其decriptor(梯度方向直方图,即一个1*orient规格的向量)
cell_descriptors=zeros(orient, h/cell_size, w/cell_size);
idx_y=1;
for y=1:cell_size:h
idx_x=1;
for x=1:cell_size:w
tmpx=Gx(y:y+cell_size-1, x:x+cell_size-1);
tmpy=Gy(y:y+cell_size-1, x:x+cell_size-1);
tmped=Gmag(y:y+cell_size-1,x:x+cell_size-1);
tmped=tmped/sum(sum(tmped)); %局部边缘强度归一化
cell_hist=zeros(1, orient); %当前cell_size*cell_size像素统计角度直方图,就是cell
for p=1:cell_size
for q=1:cell_size
ang=atan2(tmpy(p,q), tmpx(p,q)); %atan2返回的是[-pi,pi]之间的弧度值
ang=mod(ang*180/pi, 180); %先转角度,再划归到[0,180)之间。因为mod的参数现在不是整数,因此会大于179.
ang=ang+0.0000001; %防止ang为0 bin_id = ceil(ang/angle_range);%得到的bin_id \in [1,9]
cell_hist(bin_id)=cell_hist(bin_id)+tmped(p,q); %ceil向上取整,使用边缘强度加权。此处根据梯度方向进行vote,权值为梯度幅值
end
end
cell_descriptors(:,idx_y,idx_x) = cell_hist;
idx_x = idx_x + 1;
end
idx_y = idx_y + 1;
end %下面是计算feature,block_size*block_size个cell合成一个block
%比如block_size取2
[~, h, w]=size(cell_descriptors);
block_size=2; %cells_per_block=2,即每个block_size=2*8=16像素
stride=1;
h_max=floor((h-block_size)/stride)+1;
w_max=floor((w-block_size)/stride)+1;
block_descriptors=zeros(block_size*block_size*orient, h_max, w_max);
for i=1:h_max
for j=1:w_max
blk_mat=cell_descriptors(:,i:i+block_size-1, j:j+block_size-1);
normed_blk_mat=zz_normalize(blk_mat);
reshaped_blk_mat=reshape(normed_blk_mat, [1 block_size*block_size*orient]);
block_descriptors(:,i,j)=reshaped_blk_mat;
end
end %将block_descriptors进行拼接,得到final_descriptor
[d1,d2,d3]=size(block_descriptors);
dimensions=d1*d2*d3;
final_descriptor=zeros(1, dimensions);
k=1;
for i=1:d2
for j=1:d3
final_descriptor(k:k+d1-1)=block_descriptors(:,i,j);
k=k+d1;
end
end

matlab实现hog特征的更多相关文章

  1. HOG特征(Histogram of Gradient)总结(转载)

    整理一下我个人觉得比较好的HOG博文 博文1:OpenCV HOGDescriptor: 参数与图解 http://blog.csdn.NET/raodotcong/article/details/6 ...

  2. HOG特征(Histogram of Gradient)学习总结

    最近在做的项目有用到HOG+SVM这一方面的知识,参考相关论文和网上一些博文在此对HOG特征进行下总结. 参考资料: HOG的经典论文:Dalal N, Triggs B. Histograms of ...

  3. SVM+HOG特征训练分类器

    #1,概念 在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别.分类.以及回归分析. SVM的主要思想可以概括为两点:⑴它是针 ...

  4. 目标检测——HOG特征

    1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的 ...

  5. paper 80 :目标检测的图像特征提取之(一)HOG特征

    1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的 ...

  6. SVM中图像常用的HOG特征描述及实现

    转摘网址:http://www.cnblogs.com/tiandsp/archive/2013/05/24/3097503.html Hog参考网址:http://www.cnblogs.com/t ...

  7. HOG参数简介及Hog特征维数的计算(转)

    HOG构造函数 CV_WRAP HOGDescriptor() :winSize(64,128), blockSize(16,16), blockStride(8,8),      cellSize( ...

  8. 图像特征提取三大法宝:HOG特征,LBP特征,Haar特征(转载)

    (一)HOG特征 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和 ...

  9. 目标检测的图像特征提取之(一)HOG特征(转载)

    目标检测的图像特征提取之(一)HOG特征 zouxy09@qq.com http://blog.csdn.net/zouxy09 1.HOG特征: 方向梯度直方图(Histogram of Orien ...

随机推荐

  1. 迭代器和for-of循环 顺便带一下Es5中的.map遍历

    let set = new Set(); //set方法去除重复的数据 [1, 2, 3, 4, 2, 8, 4].map(function (elem) { set.add(elem); //遍历完 ...

  2. 快速判断素数 --Rabin-Miller算法

    以前我在判断素数上一直只会 sqrt(n) 复杂度的方法和所谓的试除法(预处理出sqrt(n)以内的素数,再用它们来除). (当然筛选法对于判断一个数是否是素数复杂度太高) 现在我发现其实还有一种方法 ...

  3. consumer group

    Kafka消费组(consumer group)一直以来都想写一点关于kafka consumer的东西,特别是关于新版consumer的中文资料很少.最近Kafka社区邮件组已经在讨论是否应该正式使 ...

  4. 后台运行程序screen or nohup

    后台运行 方法1 &   方法2:screen screen –S lnmp à起个名字 进去后运行程序 Ctrl+ad à退出lnmp屏幕 Scree –ls à查看 Screen –r x ...

  5. Java 基础【09】 日期类型

    java api中日期类型的继承关系 java.lang.Object --java.util.Date --java.sql.Date --java.sql.Time --java.sql.Time ...

  6. Safari 下用 "location.href = filePath" 实现下载功能的诡异 bug

    Safari 下的一些诡异 bug 我们已经领教一二,比如前文中说的 无痕浏览模式下使用 localStorage 的 API 就会报错.今天我们要讲的是利用 location.href = file ...

  7. UWP开源项目 LLQNotifier 页面间通信利器(移植EventBus)

    前言 EventBus是一个Android版本的页面间通信库,这个库让页面间的通信变得十分容易且大幅降低了页面之间的耦合.小弟之前玩Android的时候就用得十分顺手,现在玩uwp就觉得应该在这平台也 ...

  8. unity3d 三分钟实现简单的赛车漂移

    提到赛车游戏,大家最关心的应该就是漂移吧?! 从学unity开始,我就一直在断断续续的研究赛车 因为自己技术太烂.悟性太差等原因,我走了不少弯路 也许你会说,网上那么多资料,你不会查啊 是啊!网上一搜 ...

  9. ASP.NET网站入侵第三波(fineui系统漏洞,可导致被拖库)

    注:屏蔽本漏洞的紧急通知:http://fineui.com/bbs/forum.php?mod=viewthread&tid=7863 本人小学文化,文采不好,写的不好请各位多多包含, 最近 ...

  10. JSON返回DateTime/Date('123123123')/解决办法

    Date.prototype.format = function (format) //author: meizz    {        var o = {            "M+& ...