NumPy 随机数据分布与 Seaborn 可视化详解
随机数据分布
什么是数据分布?
数据分布是指数据集中所有可能值出现的频率,并用概率来表示。它描述了数据取值的可能性。
在统计学和数据科学中,数据分布是分析数据的重要基础。
NumPy 中的随机分布
NumPy 的 random
模块提供了多种方法来生成服从不同分布的随机数。
生成离散分布随机数
choice(a, p, size)
:从数组 a
中随机选择元素,并根据概率 p
进行选择。
a
:源数组,包含所有可能值。
p
:每个值的概率数组,总和必须为 1。
size
:输出数组的形状。
示例:生成 100 个随机数,其中 3 出现的概率为 0.2,5 出现的概率为 0.4,7 出现的概率为 0.3,9 出现的概率为 0.1:
import numpy as np
x = np.random.choice([3, 5, 7, 9], p=[0.2, 0.4, 0.3, 0.1], size=100)
print(x)
生成连续分布随机数
NumPy 提供了多种方法来生成服从不同连续分布的随机数,例如正态分布、均匀分布、指数分布等。
randn(size)
:生成服从标准正态分布的随机数。
rand(size)
:生成服从均匀分布的随机数。
beta(a, b, size)
:生成服从 Beta 分布的随机数。
gamma(shape, scale, size)
:生成服从 Gamma 分布的随机数。
poisson(lam, size)
:生成服从泊松分布的随机整数。
示例:生成 10 个服从标准正态分布的随机数:
import numpy as np
x = np.random.randn(10)
print(x)
随机排列
洗牌数组
shuffle(arr)
:对数组 arr
进行随机洗牌,修改原始数组。
示例:随机洗牌数组 [1, 2, 3, 4, 5]
:
import numpy as np
from numpy.random import shuffle
arr = np.array([1, 2, 3, 4, 5])
shuffle(arr)
print(arr)
生成数组的随机排列
permutation(arr)
:生成数组 arr
元素的随机排列,不修改原始数组。
示例:生成数组 [1, 2, 3, 4, 5]
的随机排列:
import numpy as np
from numpy.random import permutation
arr = np.array([1, 2, 3, 4, 5])
x = permutation(arr)
print(x)
练习
- 使用
choice
方法生成 200 个随机数,其中 1 出现的概率为 0.1,2 出现的概率为 0.2,3 出现的概率为 0.7。 - 生成 10 个服从指数分布的随机数。
- 对数组
[10, 20, 30, 40, 50]
进行随机洗牌。 - 生成数组
[6, 7, 8, 9, 10]
元素的随机排列。
解决方案
import numpy as np
from numpy.random import choice, permutation, expon
# 1. 使用 choice 方法生成随机数
random_numbers = choice([1, 2, 3], p=[0.1, 0.2, 0.7], size=200)
print(random_numbers)
# 2. 生成服从指数分布的随机数
exponential_randoms = expon(scale=1, size=10)
print(exponential_randoms)
# 3. 对数组进行随机洗牌
arr = np.array([10, 20, 30, 40, 50])
shuffle(arr)
print(arr)
# 4. 生成数组的随机排列
random_permutation = permutation([6, 7, 8, 9, 10])
print(random_permutation)
使用 Seaborn 可视化分布
简介
Seaborn 是一个基于 Matplotlib 的 Python 数据可视化库,用于创建统计图表。它提供了一系列高级绘图函数,可以轻松创建美观且信息丰富的统计图形。
安装 Seaborn
如果您已经安装了 Python 和 pip,可以使用以下命令安装 Seaborn:
pip install seaborn
如果您使用的是 Jupyter Notebook,可以使用以下命令安装 Seaborn:
!pip install seaborn
绘制分布图
分布图是一种可视化数据分布的图表。它显示了数据集中每个值的出现频率。
在 Seaborn 中,可以使用 sns.distplot()
函数绘制分布图。该函数接受以下参数:
data
:要绘制分布的数据。可以是数组、列表或 Pandas 数据框。
hist
:如果为 True
(默认),则绘制直方图;如果为 False
,则只绘制密度曲线。
kde
:如果为 True
(默认),则使用核密度估计 (KDE) 来估计数据的分布;如果为 False
,则使用直方图。
bins
:用于创建直方图的直方图数量。
norm
:用于规范分布的类型。例如,norm='kde'
将使用 KDE 来规范分布。
示例:绘制正态分布
以下示例演示如何使用 Seaborn 绘制正态分布:
import seaborn as sns
import numpy as np
# 生成随机数据
data = np.random.randn(1000)
# 绘制分布图
sns.distplot(data)
plt.show()
该代码将生成 1000 个服从标准正态分布的随机数,并使用 Seaborn 绘制它们的分布图。
示例:绘制自定义分布
以下示例演示如何绘制自定义分布:
import seaborn as sns
import numpy as np
# 生成自定义数据
data = [1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9]
# 绘制分布图
sns.distplot(data, hist=False, kde=False)
plt.show()
该代码将生成一个包含重复值的自定义数据数组,并使用 Seaborn 绘制它们的分布图,不显示直方图或密度曲线。
练习
- 生成 500 个服从均匀分布的随机数,并绘制它们的分布图。
- 生成 1000 个服从指数分布的随机数,并绘制它们的分布图。
- 从以下数据中绘制分布图:
data = [23, 37, 43, 29, 31, 32, 36, 27, 31, 33, 34, 25, 27, 28, 42, 38, 27, 27, 33, 31, 26, 29, 31, 35, 33, 30, 30, 32, 36, 28, 31, 33, 38, 29, 31, 31, 34, 36, 26, 25, 26, 34, 37, 28, 36, 31, 29, 31, 27, 28, 32, 37, 30, 33, 33, 27, 31, 32, 32, 36, 25, 32, 35, 37, 37, 30, 31, 34, 33, 29, 32, 31, 36, 26, 29, 31, 37, 28, 28, 37, 31, 32, 36, 33, 27, 31, 32, 33, 32, 32, 30, 27, 36, 38, 35, 26, 32, 37, 31, 30, 33, 30, 27,
## 最后
为了方便其他设备和平台的小伙伴观看往期文章:
微信公众号搜索:`Let us Coding`,关注后即可获取最新文章推送
看完如果觉得有帮助,欢迎点赞、收藏、关注
NumPy 随机数据分布与 Seaborn 可视化详解的更多相关文章
- Pandas系列(十二)-可视化详解
目录 1. 折线图 2. 柱状图 3. 直方图 4. 箱线图 5. 区域图 6. 散点图 7. 饼图六边形容器图 数据分析的结果不仅仅只是你来看的,更多的时候是给需求方或者老板来看的,为了更直观地看出 ...
- Numpy数组的组合与分割详解
在介绍数组的组合和分割前,我们需要先了解数组的维(ndim)和轴(axis)概念. 如果数组的元素是数组,即数组嵌套数组,我们就称其为多维数组.几层嵌套就称几维.比如形状为(a,b)的二维数组就可以看 ...
- coco标注信息与labelme标注信息的详解、相互转换及可视化
引言 在做实例分割或语义分割的时候,我们通常要用labelme进行标注,labelme标注的json文件与coco数据集已经标注好的json文件的格式和内容有差异.如果要用coco数据集的信息,就要对 ...
- 详解Python Streamlit框架,用于构建精美数据可视化web app,练习做个垃圾分类app
今天详解一个 Python 库 Streamlit,它可以为机器学习和数据分析构建 web app.它的优势是入门容易.纯 Python 编码.开发效率高.UI精美. 上图是用 Streamlit 构 ...
- 机器学习——随机森林,RandomForestClassifier参数含义详解
1.随机森林模型 clf = RandomForestClassifier(n_estimators=200, criterion='entropy', max_depth=4) rf_clf = c ...
- 可视化的Redis数据库管理工具redis-desktop-manager的初步使用(图文详解)
不多说,直接上干货! 无论是Linux 还是 Windows里安装Redis, Windows里如何正确安装Redis以服务运行(博主推荐)(图文详解) Windows下如何正确下载并安装可视化的Re ...
- Windows下如何正确下载并安装可视化的Redis数据库管理工具(redis-desktop-manager)(图文详解)
不多说,直接上干货! Redis Desktop Manager是一个可视化的Redis数据库管理工具,使用非常简单. 官网下载:https://redisdesktop.com/down ...
- qml学习笔记(二):可视化元素基类Item详解(上半场anchors等等)
原博主博客地址:http://blog.csdn.net/qq21497936本文章博客地址:http://blog.csdn.net/qq21497936/article/details/78516 ...
- 给Clouderamanager集群里安装可视化分析利器工具Hue步骤(图文详解)
扩展博客 以下,是我在手动的CDH版本,安装Hue. CDH版本大数据集群下搭建Hue(hadoop-2.6.0-cdh5.5.4.gz + hue-3.9.0-cdh5.5.4.tar.gz)(博主 ...
- 给Ambari集群里安装可视化分析利器工具Hue步骤(图文详解)
扩展博客 以下,是我在手动的CDH版本平台下,安装Hue. CDH版本大数据集群下搭建Hue(hadoop-2.6.0-cdh5.5.4.gz + hue-3.9.0-cdh5.5.4.tar.gz) ...
随机推荐
- C# 继承、多态性、抽象和接口详解:从入门到精通
C# 继承 在 C# 中,可以将字段和方法从一个类继承到另一个类.我们将"继承概念"分为两类: 派生类(子类) - 从另一个类继承的类 基类(父类) - 被继承的类 要从一个类继承 ...
- Mybatis总体框架设计
Mybatis架构概览 Mybatis架构整体设计如下: 接口层和数据库交互的方式 Mybatis和数据库的交互方式有两种 使用传统的MyBatis提供的API: 使用Mapper接口 使用传统的My ...
- 解密方舟的高性能内存回收技术——HPP GC
原文:https://mp.weixin.qq.com/s/o8uuP1XViIyviveL4m-8ZQ,点击链接查看更多技术内容. 众所周知,内存是操作系统的一项重要资源,直接影响系统性能.而在应用 ...
- 报表 BI 选型的那些事
前言 报表工具是一个接近 20 年的产物了 但是,直到现在,在各种数据信息化的系统中,报表工具的作用,不仅没有褪色,反而是因为信息化需求的增大.数据的增多,以及报表工具本身迭代后越来越方便好用,使得它 ...
- redis 简单整理——bitmaps[十二]
前言 简单介绍一下bitmaps这个东西. 正文 我们都知道bitmaps 翻译过来就是二进制. 那么二进制可以存一些什么呢? 图片.视频,还可也存些什么呢? 现代计算机用二进制(位)作为信息的基础单 ...
- docker搭建kafka集群实践
前言 本文主要介绍了如何通过docker搭建一个可以用于生产环境的kafka集群. kafka集群使用了3个节点,依赖zookeeper进行协调,所以会同时搭建一套3节点的zookeeper集群. 准 ...
- Go 单元测试之mock接口测试
目录 一.gomock 工具介绍 二.安装 三.使用 3.1 指定三个参数 3.2 使用命令为接口生成 mock 实现 3.3 使用make 命令封装处理mock 四.接口单元测试步骤 三.小黄书Se ...
- 【笔记】rocketMQ了解
记录rocketMQ 忘了从哪儿保存的图了 原图链接:https://www.jianshu.com/p/2838890f3284
- 基于 EventBridge 构建 SaaS 应用集成方案
简介:事件源是事件驱动的基石,如何获取更多事件源也是 EventBridge 一直在探索和尝试的方向.针对市场上其他云厂商和垂直领域的 Saas 服务,EventBridge 发布了 HTTP So ...
- 日志服务SLS 助力识货 APP,解决业务数据采集查询监控问题
简介: 日志服务SLS 助力识货 APP,解决业务数据采集查询监控问题 更多存储标杆案例欢迎点击下方链接查看 阿里云存储标杆案例样板间 公司介绍识货APP是虎扑体育旗下的导购应用,致力于为广大年轻用户 ...