Python的多线程和多进程

一、简介

并发是今天计算机编程中的一项重要能力,尤其是在面对需要大量计算或I/O操作的任务时。Python 提供了多种并发的处理方式,本篇文章将深入探讨其中的两种:多线程与多进程,解析其使用场景、优点、缺点,并结合代码例子深入解读。

二、多线程

Python中的线程是利用threading模块实现的。线程是在同一个进程中运行的不同任务。

2.1 线程的基本使用

在Python中创建和启动线程很简单。下面是一个简单的例子:

import threading
import time def print_numbers():
for i in range(10):
time.sleep(1)
print(i) def print_letters():
for letter in 'abcdefghij':
time.sleep(1.5)
print(letter) thread1 = threading.Thread(target=print_numbers)
thread2 = threading.Thread(target=print_letters) thread1.start()
thread2.start()

在这个例子中,print_numbersprint_letters函数都在各自的线程中执行,彼此互不干扰。

2.2 线程同步

由于线程共享内存,因此线程间的数据是可以互相访问的。但是,当多个线程同时修改数据时就会出现问题。为了解决这个问题,我们需要使用线程同步工具,如锁(Lock)和条件(Condition)等。

import threading

class BankAccount:
def __init__(self):
self.balance = 100 # 共享数据
self.lock = threading.Lock() def deposit(self, amount):
with self.lock: # 使用锁进行线程同步
balance = self.balance
balance += amount
self.balance = balance def withdraw(self, amount):
with self.lock: # 使用锁进行线程同步
balance = self.balance
balance -= amount
self.balance = balance account = BankAccount()

特别说明:Python的线程虽然受到全局解释器锁(GIL)的限制,但是对于IO密集型任务(如网络IO或者磁盘IO),使用多线程可以显著提高程序的执行效率。

三、多进程

Python中的进程是通过multiprocessing模块实现的。进程是操作系统中的一个执行实体,每个进程都有自己的内存空间,彼此互不影响。

3.1 进程的基本使用

在Python中创建和启动进程也是非常简单的:

from multiprocessing import Process
import os def greet(name):
print(f'Hello {name}, I am process {os.getpid()}') if __name__ == '__main__':
process = Process(target=greet, args=('Bob',))
process.start()
process.join()

3.2 进程间的通信

由于进程不共享内存,因此进程间通信(IPC)需要使用特定的机制,如管道(Pipe)、队列(Queue)等。

from multiprocessing import Process, Queue

def worker(q):
q.put('Hello from process') if __name__ == '__main__':
q = Queue()
process = Process(target=worker, args=(q,))
process.start()
process.join() print(q.get()) # Prints: Hello from process

特别说明:Python的多进程对于计算密集型任务是一个很好的选择,因为每个进程都有自己的Python解释器和内存空间,可以并行计算。

One More Thing

让我们再深入地看一下concurrent.futures模块,这是一个在Python中同时处理多线程和多进程的更高级的工具。concurrent.futures

块提供了一个高级的接口,将异步执行的任务放入到线程或者进程的池中,然后通过future对象来获取执行结果。这个模块使得处理线程和进程变得更简单。

下面是一个例子:

from concurrent.futures import ThreadPoolExecutor, as_completed

def worker(x):
return x * x with ThreadPoolExecutor(max_workers=4) as executor:
futures = {executor.submit(worker, x) for x in range(10)}
for future in as_completed(futures):
print(future.result())

这个代码创建了一个线程池,并且向线程池提交了10个任务。然后,通过future对象获取每个任务的结果。这里的as_completed函数提供了一种处理完成的future的方式。

通过这种方式,你可以轻松地切换线程和进程,只需要将ThreadPoolExecutor更改为ProcessPoolExecutor

无论你是处理IO密集型任务还是计算密集型任务,Python的多线程和多进程都提供了很好的解决方案。理解它们的运行机制和适用场景,可以帮助你更好地设计和优化你的程序。

如有帮助,请多关注

个人微信公众号:【Python全视角】

TeahLead_KrisChang,10+年的互联网和人工智能从业经验,10年+技术和业务团队管理经验,同济软件工程本科,复旦工程管理硕士,阿里云认证云服务资深架构师,上亿营收AI产品业务负责人。

一文掌握Python多线程与多进程的更多相关文章

  1. Python多线程和多进程谁更快?

    python多进程和多线程谁更快 python3.6 threading和multiprocessing 四核+三星250G-850-SSD 自从用多进程和多线程进行编程,一致没搞懂到底谁更快.网上很 ...

  2. Python 多线程、多进程 (三)之 线程进程对比、多进程

    Python 多线程.多进程 (一)之 源码执行流程.GIL Python 多线程.多进程 (二)之 多线程.同步.通信 Python 多线程.多进程 (三)之 线程进程对比.多线程 一.多线程与多进 ...

  3. 基于Windows平台的Python多线程及多进程学习小结

    python多线程及多进程对于不同平台有不同的工具(platform-specific tools),如os.fork仅在Unix上可用,而windows不可用,该文仅针对windows平台可用的工具 ...

  4. python多线程与多进程--存活主机ping扫描以及爬取股票价格

    python多线程与多进程 多线程: 案例:扫描给定网络中存活的主机(通过ping来测试,有响应则说明主机存活) 普通版本: #扫描给定网络中存活的主机(通过ping来测试,有响应则说明主机存活)im ...

  5. Python 多线程、多进程 (一)之 源码执行流程、GIL

    Python 多线程.多进程 (一)之 源码执行流程.GIL Python 多线程.多进程 (二)之 多线程.同步.通信 Python 多线程.多进程 (三)之 线程进程对比.多线程 一.python ...

  6. Python 多线程、多进程 (二)之 多线程、同步、通信

    Python 多线程.多进程 (一)之 源码执行流程.GIL Python 多线程.多进程 (二)之 多线程.同步.通信 Python 多线程.多进程 (三)之 线程进程对比.多线程 一.python ...

  7. python多线程与多进程及其区别

    个人一直觉得对学习任何知识而言,概念是相当重要的.掌握了概念和原理,细节可以留给实践去推敲.掌握的关键在于理解,通过具体的实例和实际操作来感性的体会概念和原理可以起到很好的效果.本文通过一些具体的例子 ...

  8. python 多线程、多进程

    一.首先说下多线程.多进程用途及异同点,另外还涉及到队列的,memcache.redis的操作等: 1.在python中,如果一个程序是IO密集的操作,使用多线程:运算密集的操作使用多进程. 但是,其 ...

  9. python多线程,多进程

    线程是公用内存,进程内存相互独立 python多线程只能是一个cpu,java可以将多个线程平均分配到其他cpu上 以核为单位,所以GIL(全局锁,保证线程安全,数据被安全读取)最小只能控制一个核,很 ...

  10. 搞定python多线程和多进程

    1 概念梳理: 1.1 线程 1.1.1 什么是线程 线程是操作系统能够进行运算调度的最小单位.它被包含在进程之中,是进程中的实际运作单位.一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发 ...

随机推荐

  1. Ceres 自动求导解析-从原理到实践

    Ceres 自动求导解析-从原理到实践 目录 Ceres 自动求导解析-从原理到实践 1.0 前言 2.0 Ceres求导简介 3.0 Ceres 自动求导原理 3.1 官方解释 3.2 自我理解 4 ...

  2. 统计数据异常值的处理——R语言

    在数据分析工作中,面对收集而来的数据,数据清洗是首要环节.异常值(outlier)是数据清洗的重要环节,异常值可能直接会导致后面的数据分析.建模工作出现偏差,下面就给大家介绍一下如何处理数据中的异常值 ...

  3. SELinux入门学习总结

    前言 安全增强型 Linux(Security-Enhanced Linux)简称 SELinux,它是一个 Linux 内核模块,也是 Linux 的一个安全子系统. SELinux 主要由美国国家 ...

  4. 四月二十六java基础知识

    1..对文件的随机访问:前面介绍的流类实现的是磁盘文件的顺序读写,而且读和写分别创建不同的对象,java语言中还定义了一个功能强大.使用更方便的随机访问类RandomAcessFile它可以实现文件的 ...

  5. c#快速入门~在java基础上,知道C#和JAVA 的不同即可

    观看下文前提:如果你的主语言是java,现在想再学一门新语言C#,下文是在java基础上,对比和java的不同,快速上手C# C# 学习参考文档和开发工具 微软c#官方文档:https://learn ...

  6. day06-SpringCloud Ribbon

    SpringCloud Ribbon 1.Ribbon介绍 1.1Ribbon是什么? 官网地址:Netflix/ribbon: Ribbon(github.com) SpringCloud Ribb ...

  7. Java设计模式 —— 代理模式

    15 代理模式 15.1 代理模式概述 Proxy Pattern: 给某一个对象提供一个代理或占位符,由代理对象来控制对原对象的访问. 代理对象是客户端和目标对象的之前的桥梁,它接收来自客户端的请求 ...

  8. Kubernetes入门实践(Pods)

    为了解决多应用联合运行的问题,同时还要不破坏容器的隔离,就要再对多个容器进行打包.Pod就是对容器的打包,里面的容器可以看成是一个整体,总是能一起调度.一起运行,绝不会出现分离的情况,而Pod属于Ku ...

  9. Docker 配置阿里云或腾讯云镜像加速

    1.新建 /etc/docker/daemon.json 文件,并写入以下内容: 阿里云按下面配置 sudo tee /etc/docker/daemon.json <<-'EOF' { ...

  10. 3.2 构造器、this、包机制、访问修饰符、封装

    构造器 构造器:在实例化的一个对象的时候会给对象赋予初始值,因此我们可以通过修改构造器,来改变对象的初始值,构造器是完成对象的初始化,并不是创建对象 我们也可以创建多个构造器实现不同的初始化,即构造器 ...